// Copyright ©2013 The Gonum Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package mat import ( "math" "gonum.org/v1/gonum/blas" "gonum.org/v1/gonum/blas/blas64" "gonum.org/v1/gonum/lapack" "gonum.org/v1/gonum/lapack/lapack64" ) const badQR = "mat: invalid QR factorization" // QR is a type for creating and using the QR factorization of a matrix. type QR struct { qr *Dense q *Dense tau []float64 cond float64 } // Dims returns the dimensions of the matrix. func (qr *QR) Dims() (r, c int) { if qr.qr == nil { return 0, 0 } return qr.qr.Dims() } // At returns the element at row i, column j. At will panic if the receiver // does not contain a successful factorization. func (qr *QR) At(i, j int) float64 { if !qr.isValid() { panic(badQR) } m, n := qr.Dims() if uint(i) >= uint(m) { panic(ErrRowAccess) } if uint(j) >= uint(n) { panic(ErrColAccess) } if qr.q == nil || qr.q.IsEmpty() { // Calculate Qi, Q i-th row qi := getFloat64s(m, true) qr.qRowTo(i, qi) // Compute QR(i,j) var val float64 for k := 0; k <= j; k++ { val += qi[k] * qr.qr.at(k, j) } putFloat64s(qi) return val } var val float64 for k := 0; k <= j; k++ { val += qr.q.at(i, k) * qr.qr.at(k, j) } return val } // qRowTo extracts the i-th row of the orthonormal matrix Q from a QR // decomposition. func (qr *QR) qRowTo(i int, dst []float64) { c := blas64.General{ Rows: 1, Cols: len(dst), Stride: len(dst), Data: dst, } c.Data[i] = 1 // C is the i-th unit vector // Construct Qi from the elementary reflectors: Qi = C * (H(1) H(2) ... H(nTau)) work := []float64{0} lapack64.Ormqr(blas.Right, blas.NoTrans, qr.qr.mat, qr.tau, c, work, -1) work = getFloat64s(int(work[0]), false) lapack64.Ormqr(blas.Right, blas.NoTrans, qr.qr.mat, qr.tau, c, work, len(work)) putFloat64s(work) } // T performs an implicit transpose by returning the receiver inside a // Transpose. func (qr *QR) T() Matrix { return Transpose{qr} } func (qr *QR) updateCond(norm lapack.MatrixNorm) { // Since A = Q*R, and Q is orthogonal, we get for the condition number κ // κ(A) := |A| |A^-1| = |Q*R| |(Q*R)^-1| = |R| |R^-1 * Qᵀ| // = |R| |R^-1| = κ(R), // where we used that fact that Q^-1 = Qᵀ. However, this assumes that // the matrix norm is invariant under orthogonal transformations which // is not the case for CondNorm. Hopefully the error is negligible: κ // is only a qualitative measure anyway. n := qr.qr.mat.Cols work := getFloat64s(3*n, false) iwork := getInts(n, false) r := qr.qr.asTriDense(n, blas.NonUnit, blas.Upper) v := lapack64.Trcon(norm, r.mat, work, iwork) putFloat64s(work) putInts(iwork) qr.cond = 1 / v } // Factorize computes the QR factorization of an m×n matrix a where m >= n. The QR // factorization always exists even if A is singular. // // The QR decomposition is a factorization of the matrix A such that A = Q * R. // The matrix Q is an orthonormal m×m matrix, and R is an m×n upper triangular matrix. // Q and R can be extracted using the QTo and RTo methods. func (qr *QR) Factorize(a Matrix) { qr.factorize(a, CondNorm) } func (qr *QR) factorize(a Matrix, norm lapack.MatrixNorm) { m, n := a.Dims() if m < n { panic(ErrShape) } if qr.qr == nil { qr.qr = &Dense{} } qr.qr.CloneFrom(a) work := []float64{0} qr.tau = make([]float64, n) lapack64.Geqrf(qr.qr.mat, qr.tau, work, -1) work = getFloat64s(int(work[0]), false) lapack64.Geqrf(qr.qr.mat, qr.tau, work, len(work)) putFloat64s(work) qr.updateCond(norm) if qr.q != nil { qr.q.Reset() } } func (qr *QR) updateQ() { m, _ := qr.Dims() if qr.q == nil { qr.q = NewDense(m, m, nil) } else { qr.q.reuseAsNonZeroed(m, m) } // Construct Q from the elementary reflectors. qr.q.Copy(qr.qr) work := []float64{0} lapack64.Orgqr(qr.q.mat, qr.tau, work, -1) work = getFloat64s(int(work[0]), false) lapack64.Orgqr(qr.q.mat, qr.tau, work, len(work)) putFloat64s(work) } // isValid returns whether the receiver contains a factorization. func (qr *QR) isValid() bool { return qr.qr != nil && !qr.qr.IsEmpty() } // Cond returns the condition number for the factorized matrix. // Cond will panic if the receiver does not contain a factorization. func (qr *QR) Cond() float64 { if !qr.isValid() { panic(badQR) } return qr.cond } // TODO(btracey): Add in the "Reduced" forms for extracting the n×n orthogonal // and upper triangular matrices. // RTo extracts the m×n upper trapezoidal matrix from a QR decomposition. // // If dst is empty, RTo will resize dst to be r×c. When dst is non-empty, // RTo will panic if dst is not r×c. RTo will also panic if the receiver // does not contain a successful factorization. func (qr *QR) RTo(dst *Dense) { if !qr.isValid() { panic(badQR) } r, c := qr.qr.Dims() if dst.IsEmpty() { dst.ReuseAs(r, c) } else { r2, c2 := dst.Dims() if r != r2 || c != c2 { panic(ErrShape) } } // Disguise the QR as an upper triangular t := &TriDense{ mat: blas64.Triangular{ N: c, Stride: qr.qr.mat.Stride, Data: qr.qr.mat.Data, Uplo: blas.Upper, Diag: blas.NonUnit, }, cap: qr.qr.capCols, } dst.Copy(t) // Zero below the triangular. for i := r; i < c; i++ { zero(dst.mat.Data[i*dst.mat.Stride : i*dst.mat.Stride+c]) } } // QTo extracts the r×r orthonormal matrix Q from a QR decomposition. // // If dst is empty, QTo will resize dst to be r×r. When dst is non-empty, // QTo will panic if dst is not r×r. QTo will also panic if the receiver // does not contain a successful factorization. func (qr *QR) QTo(dst *Dense) { if !qr.isValid() { panic(badQR) } r, _ := qr.qr.Dims() if dst.IsEmpty() { dst.ReuseAs(r, r) } else { r2, c2 := dst.Dims() if r != r2 || r != c2 { panic(ErrShape) } } if qr.q == nil || qr.q.IsEmpty() { qr.updateQ() } dst.Copy(qr.q) } // SolveTo finds a minimum-norm solution to a system of linear equations defined // by the matrices A and b, where A is an m×n matrix represented in its QR factorized // form. If A is singular or near-singular a Condition error is returned. // See the documentation for Condition for more information. // // The minimization problem solved depends on the input parameters. // // If trans == false, find X such that ||A*X - B||_2 is minimized. // If trans == true, find the minimum norm solution of Aᵀ * X = B. // // The solution matrix, X, is stored in place into dst. // SolveTo will panic if the receiver does not contain a factorization. func (qr *QR) SolveTo(dst *Dense, trans bool, b Matrix) error { if !qr.isValid() { panic(badQR) } r, c := qr.qr.Dims() br, bc := b.Dims() // The QR solve algorithm stores the result in-place into the right hand side. // The storage for the answer must be large enough to hold both b and x. // However, this method's receiver must be the size of x. Copy b, and then // copy the result into m at the end. if trans { if c != br { panic(ErrShape) } dst.reuseAsNonZeroed(r, bc) } else { if r != br { panic(ErrShape) } dst.reuseAsNonZeroed(c, bc) } // Do not need to worry about overlap between m and b because x has its own // independent storage. w := getDenseWorkspace(max(r, c), bc, false) w.Copy(b) t := qr.qr.asTriDense(qr.qr.mat.Cols, blas.NonUnit, blas.Upper).mat if trans { ok := lapack64.Trtrs(blas.Trans, t, w.mat) if !ok { return Condition(math.Inf(1)) } for i := c; i < r; i++ { zero(w.mat.Data[i*w.mat.Stride : i*w.mat.Stride+bc]) } work := []float64{0} lapack64.Ormqr(blas.Left, blas.NoTrans, qr.qr.mat, qr.tau, w.mat, work, -1) work = getFloat64s(int(work[0]), false) lapack64.Ormqr(blas.Left, blas.NoTrans, qr.qr.mat, qr.tau, w.mat, work, len(work)) putFloat64s(work) } else { work := []float64{0} lapack64.Ormqr(blas.Left, blas.Trans, qr.qr.mat, qr.tau, w.mat, work, -1) work = getFloat64s(int(work[0]), false) lapack64.Ormqr(blas.Left, blas.Trans, qr.qr.mat, qr.tau, w.mat, work, len(work)) putFloat64s(work) ok := lapack64.Trtrs(blas.NoTrans, t, w.mat) if !ok { return Condition(math.Inf(1)) } } // X was set above to be the correct size for the result. dst.Copy(w) putDenseWorkspace(w) if qr.cond > ConditionTolerance { return Condition(qr.cond) } return nil } // SolveVecTo finds a minimum-norm solution to a system of linear equations, // // Ax = b. // // See QR.SolveTo for the full documentation. // SolveVecTo will panic if the receiver does not contain a factorization. func (qr *QR) SolveVecTo(dst *VecDense, trans bool, b Vector) error { if !qr.isValid() { panic(badQR) } r, c := qr.qr.Dims() if _, bc := b.Dims(); bc != 1 { panic(ErrShape) } // The Solve implementation is non-trivial, so rather than duplicate the code, // instead recast the VecDenses as Dense and call the matrix code. bm := Matrix(b) if rv, ok := b.(RawVectorer); ok { bmat := rv.RawVector() if dst != b { dst.checkOverlap(bmat) } b := VecDense{mat: bmat} bm = b.asDense() } if trans { dst.reuseAsNonZeroed(r) } else { dst.reuseAsNonZeroed(c) } return qr.SolveTo(dst.asDense(), trans, bm) }