money/vendor/gonum.org/v1/gonum/mat/eigen.go

451 lines
12 KiB
Go
Raw Permalink Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

// Copyright ©2013 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package mat
import (
"gonum.org/v1/gonum/lapack"
"gonum.org/v1/gonum/lapack/lapack64"
)
const (
badFact = "mat: use without successful factorization"
noVectors = "mat: eigenvectors not computed"
)
// EigenSym is a type for computing all eigenvalues and, optionally,
// eigenvectors of a symmetric matrix A.
//
// It is a Symmetric matrix represented by its spectral factorization. Once
// computed, this representation is useful for extracting eigenvalues and
// eigenvector, but At is slow.
type EigenSym struct {
vectorsComputed bool
values []float64
vectors *Dense
}
// Dims returns the dimensions of the matrix.
func (e *EigenSym) Dims() (r, c int) {
n := e.SymmetricDim()
return n, n
}
// SymmetricDim implements the Symmetric interface.
func (e *EigenSym) SymmetricDim() int {
return len(e.values)
}
// At returns the element at row i, column j of the matrix A.
//
// At will panic if the eigenvectors have not been computed.
func (e *EigenSym) At(i, j int) float64 {
if !e.vectorsComputed {
panic(noVectors)
}
n, _ := e.Dims()
if uint(i) >= uint(n) {
panic(ErrRowAccess)
}
if uint(j) >= uint(n) {
panic(ErrColAccess)
}
var val float64
for k := 0; k < n; k++ {
val += e.values[k] * e.vectors.at(i, k) * e.vectors.at(j, k)
}
return val
}
// T returns the receiver, the transpose of a symmetric matrix.
func (e *EigenSym) T() Matrix {
return e
}
// Factorize computes the spectral factorization (eigendecomposition) of the
// symmetric matrix A.
//
// The spectral factorization of A can be written as
//
// A = Q * Λ * Qᵀ
//
// where Λ is a diagonal matrix whose entries are the eigenvalues, and Q is an
// orthogonal matrix whose columns are the eigenvectors.
//
// If vectors is false, the eigenvectors are not computed and later calls to
// VectorsTo and At will panic.
//
// Factorize returns whether the factorization succeeded. If it returns false,
// methods that require a successful factorization will panic.
func (e *EigenSym) Factorize(a Symmetric, vectors bool) (ok bool) {
// kill previous decomposition
e.vectorsComputed = false
e.values = e.values[:]
n := a.SymmetricDim()
sd := NewSymDense(n, nil)
sd.CopySym(a)
jobz := lapack.EVNone
if vectors {
jobz = lapack.EVCompute
}
w := make([]float64, n)
work := []float64{0}
lapack64.Syev(jobz, sd.mat, w, work, -1)
work = getFloat64s(int(work[0]), false)
ok = lapack64.Syev(jobz, sd.mat, w, work, len(work))
putFloat64s(work)
if !ok {
e.vectorsComputed = false
e.values = nil
e.vectors = nil
return false
}
e.vectorsComputed = vectors
e.values = w
e.vectors = NewDense(n, n, sd.mat.Data)
return true
}
// succFact returns whether the receiver contains a successful factorization.
func (e *EigenSym) succFact() bool {
return len(e.values) != 0
}
// Values extracts the eigenvalues of the factorized n×n matrix A in ascending
// order.
//
// If dst is not nil, the values are stored in-place into dst and returned,
// otherwise a new slice is allocated first. If dst is not nil, it must have
// length equal to n.
//
// If the receiver does not contain a successful factorization, Values will
// panic.
func (e *EigenSym) Values(dst []float64) []float64 {
if !e.succFact() {
panic(badFact)
}
if dst == nil {
dst = make([]float64, len(e.values))
}
if len(dst) != len(e.values) {
panic(ErrSliceLengthMismatch)
}
copy(dst, e.values)
return dst
}
// RawValues returns the slice storing the eigenvalues of A in ascending order.
//
// If the returned slice is modified, the factorization is invalid and should
// not be used.
//
// If the receiver does not contain a successful factorization, RawValues will
// return nil.
func (e *EigenSym) RawValues() []float64 {
if !e.succFact() {
return nil
}
return e.values
}
// VectorsTo stores the orthonormal eigenvectors of the factorized n×n matrix A
// into the columns of dst.
//
// If dst is empty, VectorsTo will resize dst to be n×n. When dst is non-empty,
// VectorsTo will panic if dst is not n×n. VectorsTo will also panic if the
// eigenvectors were not computed during the factorization, or if the receiver
// does not contain a successful factorization.
func (e *EigenSym) VectorsTo(dst *Dense) {
if !e.succFact() {
panic(badFact)
}
if !e.vectorsComputed {
panic(noVectors)
}
r, c := e.vectors.Dims()
if dst.IsEmpty() {
dst.ReuseAs(r, c)
} else {
r2, c2 := dst.Dims()
if r != r2 || c != c2 {
panic(ErrShape)
}
}
dst.Copy(e.vectors)
}
// RawQ returns the orthogonal matrix Q from the spectral factorization of the
// original matrix A
//
// A = Q * Λ * Qᵀ
//
// The columns of Q contain the eigenvectors of A.
//
// If the returned matrix is modified, the factorization is invalid and should
// not be used.
//
// If the receiver does not contain a successful factorization or eigenvectors
// not computed, RawU will return nil.
func (e *EigenSym) RawQ() Matrix {
if !e.succFact() || !e.vectorsComputed {
return nil
}
return e.vectors
}
// EigenKind specifies the computation of eigenvectors during factorization.
type EigenKind int
const (
// EigenNone specifies to not compute any eigenvectors.
EigenNone EigenKind = 0
// EigenLeft specifies to compute the left eigenvectors.
EigenLeft EigenKind = 1 << iota
// EigenRight specifies to compute the right eigenvectors.
EigenRight
// EigenBoth is a convenience value for computing both eigenvectors.
EigenBoth EigenKind = EigenLeft | EigenRight
)
// Eigen is a type for creating and using the eigenvalue decomposition of a dense matrix.
type Eigen struct {
n int // The size of the factorized matrix.
kind EigenKind
values []complex128
rVectors *CDense
lVectors *CDense
}
// succFact returns whether the receiver contains a successful factorization.
func (e *Eigen) succFact() bool {
return e.n != 0
}
// Factorize computes the eigenvalues of the square matrix a, and optionally
// the eigenvectors.
//
// A right eigenvalue/eigenvector combination is defined by
//
// A * x_r = λ * x_r
//
// where x_r is the column vector called an eigenvector, and λ is the corresponding
// eigenvalue.
//
// Similarly, a left eigenvalue/eigenvector combination is defined by
//
// x_l * A = λ * x_l
//
// The eigenvalues, but not the eigenvectors, are the same for both decompositions.
//
// Typically eigenvectors refer to right eigenvectors.
//
// In all cases, Factorize computes the eigenvalues of the matrix. kind
// specifies which of the eigenvectors, if any, to compute. See the EigenKind
// documentation for more information.
// Eigen panics if the input matrix is not square.
//
// Factorize returns whether the decomposition succeeded. If the decomposition
// failed, methods that require a successful factorization will panic.
func (e *Eigen) Factorize(a Matrix, kind EigenKind) (ok bool) {
// kill previous factorization.
e.n = 0
e.kind = 0
// Copy a because it is modified during the Lapack call.
r, c := a.Dims()
if r != c {
panic(ErrShape)
}
var sd Dense
sd.CloneFrom(a)
left := kind&EigenLeft != 0
right := kind&EigenRight != 0
var vl, vr Dense
jobvl := lapack.LeftEVNone
jobvr := lapack.RightEVNone
if left {
vl = *NewDense(r, r, nil)
jobvl = lapack.LeftEVCompute
}
if right {
vr = *NewDense(c, c, nil)
jobvr = lapack.RightEVCompute
}
wr := getFloat64s(c, false)
defer putFloat64s(wr)
wi := getFloat64s(c, false)
defer putFloat64s(wi)
work := []float64{0}
lapack64.Geev(jobvl, jobvr, sd.mat, wr, wi, vl.mat, vr.mat, work, -1)
work = getFloat64s(int(work[0]), false)
first := lapack64.Geev(jobvl, jobvr, sd.mat, wr, wi, vl.mat, vr.mat, work, len(work))
putFloat64s(work)
if first != 0 {
e.values = nil
return false
}
e.n = r
e.kind = kind
// Construct complex eigenvalues from float64 data.
values := make([]complex128, r)
for i, v := range wr {
values[i] = complex(v, wi[i])
}
e.values = values
// Construct complex eigenvectors from float64 data.
var cvl, cvr CDense
if left {
cvl = *NewCDense(r, r, nil)
e.complexEigenTo(&cvl, &vl)
e.lVectors = &cvl
} else {
e.lVectors = nil
}
if right {
cvr = *NewCDense(c, c, nil)
e.complexEigenTo(&cvr, &vr)
e.rVectors = &cvr
} else {
e.rVectors = nil
}
return true
}
// Kind returns the EigenKind of the decomposition. If no decomposition has been
// computed, Kind returns -1.
func (e *Eigen) Kind() EigenKind {
if !e.succFact() {
return -1
}
return e.kind
}
// Values extracts the eigenvalues of the factorized matrix. If dst is
// non-nil, the values are stored in-place into dst. In this case
// dst must have length n, otherwise Values will panic. If dst is
// nil, then a new slice will be allocated of the proper length and
// filed with the eigenvalues.
//
// Values panics if the Eigen decomposition was not successful.
func (e *Eigen) Values(dst []complex128) []complex128 {
if !e.succFact() {
panic(badFact)
}
if dst == nil {
dst = make([]complex128, e.n)
}
if len(dst) != e.n {
panic(ErrSliceLengthMismatch)
}
copy(dst, e.values)
return dst
}
// complexEigenTo extracts the complex eigenvectors from the real matrix d
// and stores them into the complex matrix dst.
//
// The columns of the returned n×n dense matrix contain the eigenvectors of the
// decomposition in the same order as the eigenvalues.
// If the j-th eigenvalue is real, then
//
// dst[:,j] = d[:,j],
//
// and if it is not real, then the elements of the j-th and (j+1)-th columns of d
// form complex conjugate pairs and the eigenvectors are recovered as
//
// dst[:,j] = d[:,j] + i*d[:,j+1],
// dst[:,j+1] = d[:,j] - i*d[:,j+1],
//
// where i is the imaginary unit.
func (e *Eigen) complexEigenTo(dst *CDense, d *Dense) {
r, c := d.Dims()
cr, cc := dst.Dims()
if r != cr {
panic("size mismatch")
}
if c != cc {
panic("size mismatch")
}
for j := 0; j < c; j++ {
if imag(e.values[j]) == 0 {
for i := 0; i < r; i++ {
dst.set(i, j, complex(d.at(i, j), 0))
}
continue
}
for i := 0; i < r; i++ {
real := d.at(i, j)
imag := d.at(i, j+1)
dst.set(i, j, complex(real, imag))
dst.set(i, j+1, complex(real, -imag))
}
j++
}
}
// VectorsTo stores the right eigenvectors of the decomposition into the columns
// of dst. The computed eigenvectors are normalized to have Euclidean norm equal
// to 1 and largest component real.
//
// If dst is empty, VectorsTo will resize dst to be n×n. When dst is
// non-empty, VectorsTo will panic if dst is not n×n. VectorsTo will also
// panic if the eigenvectors were not computed during the factorization,
// or if the receiver does not contain a successful factorization.
func (e *Eigen) VectorsTo(dst *CDense) {
if !e.succFact() {
panic(badFact)
}
if e.kind&EigenRight == 0 {
panic(noVectors)
}
if dst.IsEmpty() {
dst.ReuseAs(e.n, e.n)
} else {
r, c := dst.Dims()
if r != e.n || c != e.n {
panic(ErrShape)
}
}
dst.Copy(e.rVectors)
}
// LeftVectorsTo stores the left eigenvectors of the decomposition into the
// columns of dst. The computed eigenvectors are normalized to have Euclidean
// norm equal to 1 and largest component real.
//
// If dst is empty, LeftVectorsTo will resize dst to be n×n. When dst is
// non-empty, LeftVectorsTo will panic if dst is not n×n. LeftVectorsTo will also
// panic if the left eigenvectors were not computed during the factorization,
// or if the receiver does not contain a successful factorization
func (e *Eigen) LeftVectorsTo(dst *CDense) {
if !e.succFact() {
panic(badFact)
}
if e.kind&EigenLeft == 0 {
panic(noVectors)
}
if dst.IsEmpty() {
dst.ReuseAs(e.n, e.n)
} else {
r, c := dst.Dims()
if r != e.n || c != e.n {
panic(ErrShape)
}
}
dst.Copy(e.lVectors)
}