money/vendor/gonum.org/v1/gonum/mat/svd.go

426 lines
12 KiB
Go
Raw Permalink Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

// Copyright ©2013 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package mat
import (
"gonum.org/v1/gonum/blas/blas64"
"gonum.org/v1/gonum/lapack"
"gonum.org/v1/gonum/lapack/lapack64"
)
const badRcond = "mat: invalid rcond value"
// SVD is a type for creating and using the Singular Value Decomposition
// of a matrix.
type SVD struct {
kind SVDKind
s []float64
u blas64.General
vt blas64.General
}
// SVDKind specifies the treatment of singular vectors during an SVD
// factorization.
type SVDKind int
const (
// SVDNone specifies that no singular vectors should be computed during
// the decomposition.
SVDNone SVDKind = 0
// SVDThinU specifies the thin decomposition for U should be computed.
SVDThinU SVDKind = 1 << (iota - 1)
// SVDFullU specifies the full decomposition for U should be computed.
SVDFullU
// SVDThinV specifies the thin decomposition for V should be computed.
SVDThinV
// SVDFullV specifies the full decomposition for V should be computed.
SVDFullV
// SVDThin is a convenience value for computing both thin vectors.
SVDThin SVDKind = SVDThinU | SVDThinV
// SVDFull is a convenience value for computing both full vectors.
SVDFull SVDKind = SVDFullU | SVDFullV
)
// succFact returns whether the receiver contains a successful factorization.
func (svd *SVD) succFact() bool {
return len(svd.s) != 0
}
// Factorize computes the singular value decomposition (SVD) of the input matrix A.
// The singular values of A are computed in all cases, while the singular
// vectors are optionally computed depending on the input kind.
//
// The full singular value decomposition (kind == SVDFull) is a factorization
// of an m×n matrix A of the form
//
// A = U * Σ * Vᵀ
//
// where Σ is an m×n diagonal matrix, U is an m×m orthogonal matrix, and V is an
// n×n orthogonal matrix. The diagonal elements of Σ are the singular values of A.
// The first min(m,n) columns of U and V are, respectively, the left and right
// singular vectors of A.
//
// Significant storage space can be saved by using the thin representation of
// the SVD (kind == SVDThin) instead of the full SVD, especially if
// m >> n or m << n. The thin SVD finds
//
// A = U~ * Σ * V~ᵀ
//
// where U~ is of size m×min(m,n), Σ is a diagonal matrix of size min(m,n)×min(m,n)
// and V~ is of size n×min(m,n).
//
// Factorize returns whether the decomposition succeeded. If the decomposition
// failed, routines that require a successful factorization will panic.
func (svd *SVD) Factorize(a Matrix, kind SVDKind) (ok bool) {
// kill previous factorization
svd.s = svd.s[:0]
svd.kind = kind
m, n := a.Dims()
var jobU, jobVT lapack.SVDJob
// TODO(btracey): This code should be modified to have the smaller
// matrix written in-place into aCopy when the lapack/native/dgesvd
// implementation is complete.
switch {
case kind&SVDFullU != 0:
jobU = lapack.SVDAll
svd.u = blas64.General{
Rows: m,
Cols: m,
Stride: m,
Data: use(svd.u.Data, m*m),
}
case kind&SVDThinU != 0:
jobU = lapack.SVDStore
svd.u = blas64.General{
Rows: m,
Cols: min(m, n),
Stride: min(m, n),
Data: use(svd.u.Data, m*min(m, n)),
}
default:
jobU = lapack.SVDNone
}
switch {
case kind&SVDFullV != 0:
svd.vt = blas64.General{
Rows: n,
Cols: n,
Stride: n,
Data: use(svd.vt.Data, n*n),
}
jobVT = lapack.SVDAll
case kind&SVDThinV != 0:
svd.vt = blas64.General{
Rows: min(m, n),
Cols: n,
Stride: n,
Data: use(svd.vt.Data, min(m, n)*n),
}
jobVT = lapack.SVDStore
default:
jobVT = lapack.SVDNone
}
// A is destroyed on call, so copy the matrix.
aCopy := DenseCopyOf(a)
svd.kind = kind
svd.s = use(svd.s, min(m, n))
work := []float64{0}
lapack64.Gesvd(jobU, jobVT, aCopy.mat, svd.u, svd.vt, svd.s, work, -1)
work = getFloat64s(int(work[0]), false)
ok = lapack64.Gesvd(jobU, jobVT, aCopy.mat, svd.u, svd.vt, svd.s, work, len(work))
putFloat64s(work)
if !ok {
svd.kind = 0
}
return ok
}
// Kind returns the SVDKind of the decomposition. If no decomposition has been
// computed, Kind returns -1.
func (svd *SVD) Kind() SVDKind {
if !svd.succFact() {
return -1
}
return svd.kind
}
// Rank returns the rank of A based on the count of singular values greater than
// rcond scaled by the largest singular value.
// Rank will panic if the receiver does not contain a successful factorization or
// rcond is negative.
func (svd *SVD) Rank(rcond float64) int {
if rcond < 0 {
panic(badRcond)
}
if !svd.succFact() {
panic(badFact)
}
s0 := svd.s[0]
for i, v := range svd.s {
if v <= rcond*s0 {
return i
}
}
return len(svd.s)
}
// Cond returns the 2-norm condition number for the factorized matrix. Cond will
// panic if the receiver does not contain a successful factorization.
func (svd *SVD) Cond() float64 {
if !svd.succFact() {
panic(badFact)
}
return svd.s[0] / svd.s[len(svd.s)-1]
}
// Values returns the singular values of the factorized matrix in descending order.
//
// If the input slice is non-nil, the values will be stored in-place into
// the slice. In this case, the slice must have length min(m,n), and Values will
// panic with ErrSliceLengthMismatch otherwise. If the input slice is nil, a new
// slice of the appropriate length will be allocated and returned.
//
// Values will panic if the receiver does not contain a successful factorization.
func (svd *SVD) Values(s []float64) []float64 {
if !svd.succFact() {
panic(badFact)
}
if s == nil {
s = make([]float64, len(svd.s))
}
if len(s) != len(svd.s) {
panic(ErrSliceLengthMismatch)
}
copy(s, svd.s)
return s
}
// UTo extracts the matrix U from the singular value decomposition. The first
// min(m,n) columns are the left singular vectors and correspond to the singular
// values as returned from SVD.Values.
//
// If dst is empty, UTo will resize dst to be m×m if the full U was computed
// and size m×min(m,n) if the thin U was computed. When dst is non-empty, then
// UTo will panic if dst is not the appropriate size. UTo will also panic if
// the receiver does not contain a successful factorization, or if U was
// not computed during factorization.
func (svd *SVD) UTo(dst *Dense) {
if !svd.succFact() {
panic(badFact)
}
kind := svd.kind
if kind&SVDThinU == 0 && kind&SVDFullU == 0 {
panic("svd: u not computed during factorization")
}
r := svd.u.Rows
c := svd.u.Cols
if dst.IsEmpty() {
dst.ReuseAs(r, c)
} else {
r2, c2 := dst.Dims()
if r != r2 || c != c2 {
panic(ErrShape)
}
}
tmp := &Dense{
mat: svd.u,
capRows: r,
capCols: c,
}
dst.Copy(tmp)
}
// VTo extracts the matrix V from the singular value decomposition. The first
// min(m,n) columns are the right singular vectors and correspond to the singular
// values as returned from SVD.Values.
//
// If dst is empty, VTo will resize dst to be n×n if the full V was computed
// and size n×min(m,n) if the thin V was computed. When dst is non-empty, then
// VTo will panic if dst is not the appropriate size. VTo will also panic if
// the receiver does not contain a successful factorization, or if V was
// not computed during factorization.
func (svd *SVD) VTo(dst *Dense) {
if !svd.succFact() {
panic(badFact)
}
kind := svd.kind
if kind&SVDThinV == 0 && kind&SVDFullV == 0 {
panic("svd: v not computed during factorization")
}
r := svd.vt.Rows
c := svd.vt.Cols
if dst.IsEmpty() {
dst.ReuseAs(c, r)
} else {
r2, c2 := dst.Dims()
if c != r2 || r != c2 {
panic(ErrShape)
}
}
tmp := &Dense{
mat: svd.vt,
capRows: r,
capCols: c,
}
dst.Copy(tmp.T())
}
// SolveTo calculates the minimum-norm solution to a linear least squares problem
//
// minimize over n-element vectors x: |b - A*x|_2 and |x|_2
//
// where b is a given m-element vector, using the SVD of m×n matrix A stored in
// the receiver. A may be rank-deficient, that is, the given effective rank can be
//
// rank ≤ min(m,n)
//
// The rank can be computed using SVD.Rank.
//
// Several right-hand side vectors b and solution vectors x can be handled in a
// single call. Vectors b are stored in the columns of the m×k matrix B and the
// resulting vectors x will be stored in the columns of dst. dst must be either
// empty or have the size equal to n×k.
//
// The decomposition must have been factorized computing both the U and V
// singular vectors.
//
// SolveTo returns the residuals calculated from the complete SVD. For this
// value to be valid the factorization must have been performed with at least
// SVDFullU.
func (svd *SVD) SolveTo(dst *Dense, b Matrix, rank int) []float64 {
if !svd.succFact() {
panic(badFact)
}
if rank < 1 || len(svd.s) < rank {
panic("svd: rank out of range")
}
kind := svd.kind
if kind&SVDThinU == 0 && kind&SVDFullU == 0 {
panic("svd: u not computed during factorization")
}
if kind&SVDThinV == 0 && kind&SVDFullV == 0 {
panic("svd: v not computed during factorization")
}
u := Dense{
mat: svd.u,
capRows: svd.u.Rows,
capCols: svd.u.Cols,
}
vt := Dense{
mat: svd.vt,
capRows: svd.vt.Rows,
capCols: svd.vt.Cols,
}
s := svd.s[:rank]
_, bc := b.Dims()
c := getDenseWorkspace(svd.u.Cols, bc, false)
defer putDenseWorkspace(c)
c.Mul(u.T(), b)
y := getDenseWorkspace(rank, bc, false)
defer putDenseWorkspace(y)
y.DivElem(c.slice(0, rank, 0, bc), repVector{vec: s, cols: bc})
dst.Mul(vt.slice(0, rank, 0, svd.vt.Cols).T(), y)
res := make([]float64, bc)
if rank < svd.u.Cols {
c = c.slice(len(s), svd.u.Cols, 0, bc)
for j := range res {
col := c.ColView(j)
res[j] = Dot(col, col)
}
}
return res
}
type repVector struct {
vec []float64
cols int
}
func (m repVector) Dims() (r, c int) { return len(m.vec), m.cols }
func (m repVector) At(i, j int) float64 {
if i < 0 || len(m.vec) <= i || j < 0 || m.cols <= j {
panic(ErrIndexOutOfRange.string) // Panic with string to prevent mat.Error recovery.
}
return m.vec[i]
}
func (m repVector) T() Matrix { return Transpose{m} }
// SolveVecTo calculates the minimum-norm solution to a linear least squares problem
//
// minimize over n-element vectors x: |b - A*x|_2 and |x|_2
//
// where b is a given m-element vector, using the SVD of m×n matrix A stored in
// the receiver. A may be rank-deficient, that is, the given effective rank can be
//
// rank ≤ min(m,n)
//
// The rank can be computed using SVD.Rank.
//
// The resulting vector x will be stored in dst. dst must be either empty or
// have length equal to n.
//
// The decomposition must have been factorized computing both the U and V
// singular vectors.
//
// SolveVecTo returns the residuals calculated from the complete SVD. For this
// value to be valid the factorization must have been performed with at least
// SVDFullU.
func (svd *SVD) SolveVecTo(dst *VecDense, b Vector, rank int) float64 {
if !svd.succFact() {
panic(badFact)
}
if rank < 1 || len(svd.s) < rank {
panic("svd: rank out of range")
}
kind := svd.kind
if kind&SVDThinU == 0 && kind&SVDFullU == 0 {
panic("svd: u not computed during factorization")
}
if kind&SVDThinV == 0 && kind&SVDFullV == 0 {
panic("svd: v not computed during factorization")
}
u := Dense{
mat: svd.u,
capRows: svd.u.Rows,
capCols: svd.u.Cols,
}
vt := Dense{
mat: svd.vt,
capRows: svd.vt.Rows,
capCols: svd.vt.Cols,
}
s := svd.s[:rank]
c := getVecDenseWorkspace(svd.u.Cols, false)
defer putVecDenseWorkspace(c)
c.MulVec(u.T(), b)
y := getVecDenseWorkspace(rank, false)
defer putVecDenseWorkspace(y)
y.DivElemVec(c.sliceVec(0, rank), NewVecDense(rank, s))
dst.MulVec(vt.slice(0, rank, 0, svd.vt.Cols).T(), y)
var res float64
if rank < c.Len() {
c = c.sliceVec(rank, c.Len())
res = Dot(c, c)
}
return res
}