money/vendor/gonum.org/v1/gonum/lapack/gonum/dgesc2.go

94 lines
1.9 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

// Copyright ©2021 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gonum
import (
"math"
"gonum.org/v1/gonum/blas/blas64"
)
// Dgesc2 solves a system of linear equations
//
// A * x = scale * b
//
// with a general n×n matrix A represented by the LU factorization with complete
// pivoting
//
// A = P * L * U * Q
//
// as computed by Dgetc2.
//
// On entry, rhs contains the right hand side vector b. On return, it is
// overwritten with the solution vector x.
//
// Dgesc2 returns a scale factor
//
// 0 <= scale <= 1
//
// chosen to prevent overflow in the solution.
//
// Dgesc2 is an internal routine. It is exported for testing purposes.
func (impl Implementation) Dgesc2(n int, a []float64, lda int, rhs []float64, ipiv, jpiv []int) (scale float64) {
switch {
case n < 0:
panic(nLT0)
case lda < max(1, n):
panic(badLdA)
}
// Quick return if possible.
if n == 0 {
return 0
}
switch {
case len(a) < (n-1)*lda+n:
panic(shortA)
case len(rhs) < n:
panic(shortRHS)
case len(ipiv) != n:
panic(badLenIpiv)
case len(jpiv) != n:
panic(badLenJpiv)
}
const smlnum = dlamchS / dlamchP
// Apply permutations ipiv to rhs.
impl.Dlaswp(1, rhs, 1, 0, n-1, ipiv[:n], 1)
// Solve for L part.
for i := 0; i < n-1; i++ {
for j := i + 1; j < n; j++ {
rhs[j] -= float64(a[j*lda+i] * rhs[i])
}
}
// Check for scaling.
scale = 1.0
bi := blas64.Implementation()
i := bi.Idamax(n, rhs, 1)
if 2*smlnum*math.Abs(rhs[i]) > math.Abs(a[(n-1)*lda+(n-1)]) {
temp := 0.5 / math.Abs(rhs[i])
bi.Dscal(n, temp, rhs, 1)
scale *= temp
}
// Solve for U part.
for i := n - 1; i >= 0; i-- {
temp := 1.0 / a[i*lda+i]
rhs[i] *= temp
for j := i + 1; j < n; j++ {
rhs[i] -= float64(rhs[j] * (a[i*lda+j] * temp))
}
}
// Apply permutations jpiv to the solution (rhs).
impl.Dlaswp(1, rhs, 1, 0, n-1, jpiv[:n], -1)
return scale
}