money/vendor/gonum.org/v1/gonum/lapack/gonum/dpstf2.go

203 lines
5.0 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

// Copyright ©2021 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gonum
import (
"math"
"gonum.org/v1/gonum/blas"
"gonum.org/v1/gonum/blas/blas64"
)
// Dpstf2 computes the Cholesky factorization with complete pivoting of an n×n
// symmetric positive semidefinite matrix A.
//
// The factorization has the form
//
// Pᵀ * A * P = Uᵀ * U , if uplo = blas.Upper,
// Pᵀ * A * P = L * Lᵀ, if uplo = blas.Lower,
//
// where U is an upper triangular matrix, L is lower triangular, and P is a
// permutation matrix.
//
// tol is a user-defined tolerance. The algorithm terminates if the pivot is
// less than or equal to tol. If tol is negative, then n*eps*max(A[k,k]) will be
// used instead.
//
// On return, A contains the factor U or L from the Cholesky factorization and
// piv contains P stored such that P[piv[k],k] = 1.
//
// Dpstf2 returns the computed rank of A and whether the factorization can be
// used to solve a system. Dpstf2 does not attempt to check that A is positive
// semi-definite, so if ok is false, the matrix A is either rank deficient or is
// not positive semidefinite.
//
// The length of piv must be n and the length of work must be at least 2*n,
// otherwise Dpstf2 will panic.
//
// Dpstf2 is an internal routine. It is exported for testing purposes.
func (Implementation) Dpstf2(uplo blas.Uplo, n int, a []float64, lda int, piv []int, tol float64, work []float64) (rank int, ok bool) {
switch {
case uplo != blas.Upper && uplo != blas.Lower:
panic(badUplo)
case n < 0:
panic(nLT0)
case lda < max(1, n):
panic(badLdA)
}
// Quick return if possible.
if n == 0 {
return 0, true
}
switch {
case len(a) < (n-1)*lda+n:
panic(shortA)
case len(piv) != n:
panic(badLenPiv)
case len(work) < 2*n:
panic(shortWork)
}
// Initialize piv.
for i := range piv[:n] {
piv[i] = i
}
// Compute the first pivot.
pvt := 0
ajj := a[0]
for i := 1; i < n; i++ {
aii := a[i*lda+i]
if aii > ajj {
pvt = i
ajj = aii
}
}
if ajj <= 0 || math.IsNaN(ajj) {
return 0, false
}
// Compute stopping value if not supplied.
dstop := tol
if dstop < 0 {
dstop = float64(n) * dlamchE * ajj
}
// Set first half of work to zero, holds dot products.
dots := work[:n]
for i := range dots {
dots[i] = 0
}
work2 := work[n : 2*n]
bi := blas64.Implementation()
if uplo == blas.Upper {
// Compute the Cholesky factorization Pᵀ * A * P = Uᵀ * U.
for j := 0; j < n; j++ {
// Update dot products and compute possible pivots which are stored
// in the second half of work.
for i := j; i < n; i++ {
if j > 0 {
tmp := a[(j-1)*lda+i]
dots[i] += tmp * tmp
}
work2[i] = a[i*lda+i] - dots[i]
}
if j > 0 {
// Find the pivot.
pvt = j
ajj = work2[pvt]
for k := j + 1; k < n; k++ {
wk := work2[k]
if wk > ajj {
pvt = k
ajj = wk
}
}
// Test for exit.
if ajj <= dstop || math.IsNaN(ajj) {
a[j*lda+j] = ajj
return j, false
}
}
if j != pvt {
// Swap pivot rows and columns.
a[pvt*lda+pvt] = a[j*lda+j]
bi.Dswap(j, a[j:], lda, a[pvt:], lda)
if pvt < n-1 {
bi.Dswap(n-pvt-1, a[j*lda+(pvt+1):], 1, a[pvt*lda+(pvt+1):], 1)
}
bi.Dswap(pvt-j-1, a[j*lda+(j+1):], 1, a[(j+1)*lda+pvt:], lda)
// Swap dot products and piv.
dots[j], dots[pvt] = dots[pvt], dots[j]
piv[j], piv[pvt] = piv[pvt], piv[j]
}
ajj = math.Sqrt(ajj)
a[j*lda+j] = ajj
// Compute elements j+1:n of row j.
if j < n-1 {
bi.Dgemv(blas.Trans, j, n-j-1,
-1, a[j+1:], lda, a[j:], lda,
1, a[j*lda+j+1:], 1)
bi.Dscal(n-j-1, 1/ajj, a[j*lda+j+1:], 1)
}
}
} else {
// Compute the Cholesky factorization Pᵀ * A * P = L * Lᵀ.
for j := 0; j < n; j++ {
// Update dot products and compute possible pivots which are stored
// in the second half of work.
for i := j; i < n; i++ {
if j > 0 {
tmp := a[i*lda+(j-1)]
dots[i] += tmp * tmp
}
work2[i] = a[i*lda+i] - dots[i]
}
if j > 0 {
// Find the pivot.
pvt = j
ajj = work2[pvt]
for k := j + 1; k < n; k++ {
wk := work2[k]
if wk > ajj {
pvt = k
ajj = wk
}
}
// Test for exit.
if ajj <= dstop || math.IsNaN(ajj) {
a[j*lda+j] = ajj
return j, false
}
}
if j != pvt {
// Swap pivot rows and columns.
a[pvt*lda+pvt] = a[j*lda+j]
bi.Dswap(j, a[j*lda:], 1, a[pvt*lda:], 1)
if pvt < n-1 {
bi.Dswap(n-pvt-1, a[(pvt+1)*lda+j:], lda, a[(pvt+1)*lda+pvt:], lda)
}
bi.Dswap(pvt-j-1, a[(j+1)*lda+j:], lda, a[pvt*lda+(j+1):], 1)
// Swap dot products and piv.
dots[j], dots[pvt] = dots[pvt], dots[j]
piv[j], piv[pvt] = piv[pvt], piv[j]
}
ajj = math.Sqrt(ajj)
a[j*lda+j] = ajj
// Compute elements j+1:n of column j.
if j < n-1 {
bi.Dgemv(blas.NoTrans, n-j-1, j,
-1, a[(j+1)*lda:], lda, a[j*lda:], 1,
1, a[(j+1)*lda+j:], lda)
bi.Dscal(n-j-1, 1/ajj, a[(j+1)*lda+j:], lda)
}
}
}
return n, true
}