240 lines
		
	
	
		
			5.8 KiB
		
	
	
	
		
			Go
		
	
	
			
		
		
	
	
			240 lines
		
	
	
		
			5.8 KiB
		
	
	
	
		
			Go
		
	
	
| // Copyright ©2017 The Gonum Authors. All rights reserved.
 | ||
| // Use of this source code is governed by a BSD-style
 | ||
| // license that can be found in the LICENSE file.
 | ||
| 
 | ||
| package mat
 | ||
| 
 | ||
| import (
 | ||
| 	"errors"
 | ||
| 
 | ||
| 	"gonum.org/v1/gonum/blas/blas64"
 | ||
| )
 | ||
| 
 | ||
| // HOGSVD is a type for creating and using the Higher Order Generalized Singular Value
 | ||
| // Decomposition (HOGSVD) of a set of matrices.
 | ||
| //
 | ||
| // The factorization is a linear transformation of the data sets from the given
 | ||
| // variable×sample spaces to reduced and diagonalized "eigenvariable"×"eigensample"
 | ||
| // spaces.
 | ||
| type HOGSVD struct {
 | ||
| 	n int
 | ||
| 	v *Dense
 | ||
| 	b []Dense
 | ||
| 
 | ||
| 	err error
 | ||
| }
 | ||
| 
 | ||
| // succFact returns whether the receiver contains a successful factorization.
 | ||
| func (gsvd *HOGSVD) succFact() bool {
 | ||
| 	return gsvd.n != 0
 | ||
| }
 | ||
| 
 | ||
| // Factorize computes the higher order generalized singular value decomposition (HOGSVD)
 | ||
| // of the n input r_i×c column tall matrices in m. HOGSV extends the GSVD case from 2 to n
 | ||
| // input matrices.
 | ||
| //
 | ||
| //	M_0 = U_0 * Σ_0 * Vᵀ
 | ||
| //	M_1 = U_1 * Σ_1 * Vᵀ
 | ||
| //	.
 | ||
| //	.
 | ||
| //	.
 | ||
| //	M_{n-1} = U_{n-1} * Σ_{n-1} * Vᵀ
 | ||
| //
 | ||
| // where U_i are r_i×c matrices of singular vectors, Σ are c×c matrices singular values, and V
 | ||
| // is a c×c matrix of singular vectors.
 | ||
| //
 | ||
| // Factorize returns whether the decomposition succeeded. If the decomposition
 | ||
| // failed, routines that require a successful factorization will panic.
 | ||
| func (gsvd *HOGSVD) Factorize(m ...Matrix) (ok bool) {
 | ||
| 	// Factorize performs the HOGSVD factorisation
 | ||
| 	// essentially as described by Ponnapalli et al.
 | ||
| 	// https://doi.org/10.1371/journal.pone.0028072
 | ||
| 
 | ||
| 	if len(m) < 2 {
 | ||
| 		panic("hogsvd: too few matrices")
 | ||
| 	}
 | ||
| 	gsvd.n = 0
 | ||
| 
 | ||
| 	r, c := m[0].Dims()
 | ||
| 	a := make([]Cholesky, len(m))
 | ||
| 	var ts SymDense
 | ||
| 	for i, d := range m {
 | ||
| 		rd, cd := d.Dims()
 | ||
| 		if rd < cd {
 | ||
| 			gsvd.err = ErrShape
 | ||
| 			return false
 | ||
| 		}
 | ||
| 		if rd > r {
 | ||
| 			r = rd
 | ||
| 		}
 | ||
| 		if cd != c {
 | ||
| 			panic(ErrShape)
 | ||
| 		}
 | ||
| 		ts.Reset()
 | ||
| 		ts.SymOuterK(1, d.T())
 | ||
| 		ok = a[i].Factorize(&ts)
 | ||
| 		if !ok {
 | ||
| 			gsvd.err = errors.New("hogsvd: cholesky decomposition failed")
 | ||
| 			return false
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	s := getDenseWorkspace(c, c, true)
 | ||
| 	defer putDenseWorkspace(s)
 | ||
| 	sij := getDenseWorkspace(c, c, false)
 | ||
| 	defer putDenseWorkspace(sij)
 | ||
| 	for i, ai := range a {
 | ||
| 		for _, aj := range a[i+1:] {
 | ||
| 			gsvd.err = ai.SolveCholTo(sij, &aj)
 | ||
| 			if gsvd.err != nil {
 | ||
| 				return false
 | ||
| 			}
 | ||
| 			s.Add(s, sij)
 | ||
| 
 | ||
| 			gsvd.err = aj.SolveCholTo(sij, &ai)
 | ||
| 			if gsvd.err != nil {
 | ||
| 				return false
 | ||
| 			}
 | ||
| 			s.Add(s, sij)
 | ||
| 		}
 | ||
| 	}
 | ||
| 	s.Scale(1/float64(len(m)*(len(m)-1)), s)
 | ||
| 
 | ||
| 	var eig Eigen
 | ||
| 	ok = eig.Factorize(s.T(), EigenRight)
 | ||
| 	if !ok {
 | ||
| 		gsvd.err = errors.New("hogsvd: eigen decomposition failed")
 | ||
| 		return false
 | ||
| 	}
 | ||
| 	var vc CDense
 | ||
| 	eig.VectorsTo(&vc)
 | ||
| 	// vc is guaranteed to have real eigenvalues.
 | ||
| 	rc, cc := vc.Dims()
 | ||
| 	v := NewDense(rc, cc, nil)
 | ||
| 	for i := 0; i < rc; i++ {
 | ||
| 		for j := 0; j < cc; j++ {
 | ||
| 			a := vc.At(i, j)
 | ||
| 			v.set(i, j, real(a))
 | ||
| 		}
 | ||
| 	}
 | ||
| 	// Rescale the columns of v by their Frobenius norms.
 | ||
| 	// Work done in cv is reflected in v.
 | ||
| 	var cv VecDense
 | ||
| 	for j := 0; j < c; j++ {
 | ||
| 		cv.ColViewOf(v, j)
 | ||
| 		cv.ScaleVec(1/blas64.Nrm2(cv.mat), &cv)
 | ||
| 	}
 | ||
| 
 | ||
| 	b := make([]Dense, len(m))
 | ||
| 	biT := getDenseWorkspace(c, r, false)
 | ||
| 	defer putDenseWorkspace(biT)
 | ||
| 	for i, d := range m {
 | ||
| 		// All calls to reset will leave an emptied
 | ||
| 		// matrix with capacity to store the result
 | ||
| 		// without additional allocation.
 | ||
| 		biT.Reset()
 | ||
| 		gsvd.err = biT.Solve(v, d.T())
 | ||
| 		if gsvd.err != nil {
 | ||
| 			return false
 | ||
| 		}
 | ||
| 		b[i].CloneFrom(biT.T())
 | ||
| 	}
 | ||
| 
 | ||
| 	gsvd.n = len(m)
 | ||
| 	gsvd.v = v
 | ||
| 	gsvd.b = b
 | ||
| 	return true
 | ||
| }
 | ||
| 
 | ||
| // Err returns the reason for a factorization failure.
 | ||
| func (gsvd *HOGSVD) Err() error {
 | ||
| 	return gsvd.err
 | ||
| }
 | ||
| 
 | ||
| // Len returns the number of matrices that have been factorized. If Len returns
 | ||
| // zero, the factorization was not successful.
 | ||
| func (gsvd *HOGSVD) Len() int {
 | ||
| 	return gsvd.n
 | ||
| }
 | ||
| 
 | ||
| // UTo extracts the matrix U_n from the singular value decomposition, storing
 | ||
| // the result in-place into dst. U_n is size r×c.
 | ||
| //
 | ||
| // If dst is empty, UTo will resize dst to be r×c. When dst is
 | ||
| // non-empty, UTo will panic if dst is not r×c. UTo will also
 | ||
| // panic if the receiver does not contain a successful factorization.
 | ||
| func (gsvd *HOGSVD) UTo(dst *Dense, n int) {
 | ||
| 	if !gsvd.succFact() {
 | ||
| 		panic(badFact)
 | ||
| 	}
 | ||
| 	if n < 0 || gsvd.n <= n {
 | ||
| 		panic("hogsvd: invalid index")
 | ||
| 	}
 | ||
| 	r, c := gsvd.b[n].Dims()
 | ||
| 	if dst.IsEmpty() {
 | ||
| 		dst.ReuseAs(r, c)
 | ||
| 	} else {
 | ||
| 		r2, c2 := dst.Dims()
 | ||
| 		if r != r2 || c != c2 {
 | ||
| 			panic(ErrShape)
 | ||
| 		}
 | ||
| 	}
 | ||
| 	dst.Copy(&gsvd.b[n])
 | ||
| 	var v VecDense
 | ||
| 	for j, f := range gsvd.Values(nil, n) {
 | ||
| 		v.ColViewOf(dst, j)
 | ||
| 		v.ScaleVec(1/f, &v)
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| // Values returns the nth set of singular values of the factorized system.
 | ||
| // If the input slice is non-nil, the values will be stored in-place into the slice.
 | ||
| // In this case, the slice must have length c, and Values will panic with
 | ||
| // ErrSliceLengthMismatch otherwise. If the input slice is nil,
 | ||
| // a new slice of the appropriate length will be allocated and returned.
 | ||
| //
 | ||
| // Values will panic if the receiver does not contain a successful factorization.
 | ||
| func (gsvd *HOGSVD) Values(s []float64, n int) []float64 {
 | ||
| 	if !gsvd.succFact() {
 | ||
| 		panic(badFact)
 | ||
| 	}
 | ||
| 	if n < 0 || gsvd.n <= n {
 | ||
| 		panic("hogsvd: invalid index")
 | ||
| 	}
 | ||
| 
 | ||
| 	_, c := gsvd.b[n].Dims()
 | ||
| 	if s == nil {
 | ||
| 		s = make([]float64, c)
 | ||
| 	} else if len(s) != c {
 | ||
| 		panic(ErrSliceLengthMismatch)
 | ||
| 	}
 | ||
| 	var v VecDense
 | ||
| 	for j := 0; j < c; j++ {
 | ||
| 		v.ColViewOf(&gsvd.b[n], j)
 | ||
| 		s[j] = blas64.Nrm2(v.mat)
 | ||
| 	}
 | ||
| 	return s
 | ||
| }
 | ||
| 
 | ||
| // VTo extracts the matrix V from the singular value decomposition, storing
 | ||
| // the result in-place into dst. V is size c×c.
 | ||
| //
 | ||
| // If dst is empty, VTo will resize dst to be c×c. When dst is
 | ||
| // non-empty, VTo will panic if dst is not c×c. VTo will also
 | ||
| // panic if the receiver does not contain a successful factorization.
 | ||
| func (gsvd *HOGSVD) VTo(dst *Dense) {
 | ||
| 	if !gsvd.succFact() {
 | ||
| 		panic(badFact)
 | ||
| 	}
 | ||
| 	r, c := gsvd.v.Dims()
 | ||
| 	if dst.IsEmpty() {
 | ||
| 		dst.ReuseAs(r, c)
 | ||
| 	} else {
 | ||
| 		r2, c2 := dst.Dims()
 | ||
| 		if r != r2 || c != c2 {
 | ||
| 			panic(ErrShape)
 | ||
| 		}
 | ||
| 	}
 | ||
| 	dst.Copy(gsvd.v)
 | ||
| }
 |