488 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Go
		
	
	
			
		
		
	
	
			488 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Go
		
	
	
| // Copyright ©2013 The Gonum Authors. All rights reserved.
 | ||
| // Use of this source code is governed by a BSD-style
 | ||
| // license that can be found in the LICENSE file.
 | ||
| 
 | ||
| package mat
 | ||
| 
 | ||
| import (
 | ||
| 	"math"
 | ||
| 
 | ||
| 	"gonum.org/v1/gonum/blas"
 | ||
| 	"gonum.org/v1/gonum/blas/blas64"
 | ||
| 	"gonum.org/v1/gonum/floats"
 | ||
| 	"gonum.org/v1/gonum/lapack"
 | ||
| 	"gonum.org/v1/gonum/lapack/lapack64"
 | ||
| )
 | ||
| 
 | ||
| const (
 | ||
| 	badSliceLength = "mat: improper slice length"
 | ||
| 	badLU          = "mat: invalid LU factorization"
 | ||
| )
 | ||
| 
 | ||
| // LU is a square n×n matrix represented by its LU factorization with partial
 | ||
| // pivoting.
 | ||
| //
 | ||
| // The factorization has the form
 | ||
| //
 | ||
| //	A = P * L * U
 | ||
| //
 | ||
| // where P is a permutation matrix, L is lower triangular with unit diagonal
 | ||
| // elements, and U is upper triangular.
 | ||
| //
 | ||
| // Note that this matrix representation is useful for certain operations, in
 | ||
| // particular for solving linear systems of equations. It is very inefficient at
 | ||
| // other operations, in particular At is slow.
 | ||
| type LU struct {
 | ||
| 	lu    *Dense
 | ||
| 	swaps []int
 | ||
| 	piv   []int
 | ||
| 	cond  float64
 | ||
| 	ok    bool // Whether A is nonsingular
 | ||
| }
 | ||
| 
 | ||
| var _ Matrix = (*LU)(nil)
 | ||
| 
 | ||
| // Dims returns the dimensions of the matrix A.
 | ||
| func (lu *LU) Dims() (r, c int) {
 | ||
| 	if lu.lu == nil {
 | ||
| 		return 0, 0
 | ||
| 	}
 | ||
| 	return lu.lu.Dims()
 | ||
| }
 | ||
| 
 | ||
| // At returns the element of A at row i, column j.
 | ||
| func (lu *LU) At(i, j int) float64 {
 | ||
| 	n, _ := lu.Dims()
 | ||
| 	if uint(i) >= uint(n) {
 | ||
| 		panic(ErrRowAccess)
 | ||
| 	}
 | ||
| 	if uint(j) >= uint(n) {
 | ||
| 		panic(ErrColAccess)
 | ||
| 	}
 | ||
| 
 | ||
| 	i = lu.piv[i]
 | ||
| 	var val float64
 | ||
| 	for k := 0; k < min(i, j+1); k++ {
 | ||
| 		val += lu.lu.at(i, k) * lu.lu.at(k, j)
 | ||
| 	}
 | ||
| 	if i <= j {
 | ||
| 		val += lu.lu.at(i, j)
 | ||
| 	}
 | ||
| 	return val
 | ||
| }
 | ||
| 
 | ||
| // T performs an implicit transpose by returning the receiver inside a
 | ||
| // Transpose.
 | ||
| func (lu *LU) T() Matrix {
 | ||
| 	return Transpose{lu}
 | ||
| }
 | ||
| 
 | ||
| // updateCond updates the stored condition number of the matrix. anorm is the
 | ||
| // norm of the original matrix. If anorm is negative it will be estimated.
 | ||
| func (lu *LU) updateCond(anorm float64, norm lapack.MatrixNorm) {
 | ||
| 	n := lu.lu.mat.Cols
 | ||
| 	work := getFloat64s(4*n, false)
 | ||
| 	defer putFloat64s(work)
 | ||
| 	iwork := getInts(n, false)
 | ||
| 	defer putInts(iwork)
 | ||
| 	if anorm < 0 {
 | ||
| 		// This is an approximation. By the definition of a norm,
 | ||
| 		//  |AB| <= |A| |B|.
 | ||
| 		// Since A = L*U, we get for the condition number κ that
 | ||
| 		//  κ(A) := |A| |A^-1| = |L*U| |A^-1| <= |L| |U| |A^-1|,
 | ||
| 		// so this will overestimate the condition number somewhat.
 | ||
| 		// The norm of the original factorized matrix cannot be stored
 | ||
| 		// because of update possibilities.
 | ||
| 		u := lu.lu.asTriDense(n, blas.NonUnit, blas.Upper)
 | ||
| 		l := lu.lu.asTriDense(n, blas.Unit, blas.Lower)
 | ||
| 		unorm := lapack64.Lantr(norm, u.mat, work)
 | ||
| 		lnorm := lapack64.Lantr(norm, l.mat, work)
 | ||
| 		anorm = unorm * lnorm
 | ||
| 	}
 | ||
| 	v := lapack64.Gecon(norm, lu.lu.mat, anorm, work, iwork)
 | ||
| 	lu.cond = 1 / v
 | ||
| }
 | ||
| 
 | ||
| // Factorize computes the LU factorization of the square matrix A and stores the
 | ||
| // result in the receiver. The LU decomposition will complete regardless of the
 | ||
| // singularity of a.
 | ||
| //
 | ||
| // The L and U matrix factors can be extracted from the factorization using the
 | ||
| // LTo and UTo methods. The matrix P can be extracted as a row permutation using
 | ||
| // the RowPivots method and applied using Dense.PermuteRows.
 | ||
| func (lu *LU) Factorize(a Matrix) {
 | ||
| 	lu.factorize(a, CondNorm)
 | ||
| }
 | ||
| 
 | ||
| func (lu *LU) factorize(a Matrix, norm lapack.MatrixNorm) {
 | ||
| 	m, n := a.Dims()
 | ||
| 	if m != n {
 | ||
| 		panic(ErrSquare)
 | ||
| 	}
 | ||
| 	if lu.lu == nil {
 | ||
| 		lu.lu = NewDense(n, n, nil)
 | ||
| 	} else {
 | ||
| 		lu.lu.Reset()
 | ||
| 		lu.lu.reuseAsNonZeroed(n, n)
 | ||
| 	}
 | ||
| 	lu.lu.Copy(a)
 | ||
| 	lu.swaps = useInt(lu.swaps, n)
 | ||
| 	lu.piv = useInt(lu.piv, n)
 | ||
| 	work := getFloat64s(n, false)
 | ||
| 	anorm := lapack64.Lange(norm, lu.lu.mat, work)
 | ||
| 	putFloat64s(work)
 | ||
| 	lu.ok = lapack64.Getrf(lu.lu.mat, lu.swaps)
 | ||
| 	lu.updatePivots(lu.swaps)
 | ||
| 	lu.updateCond(anorm, norm)
 | ||
| }
 | ||
| 
 | ||
| func (lu *LU) updatePivots(swaps []int) {
 | ||
| 	// Replay the sequence of row swaps in order to find the row permutation.
 | ||
| 	for i := range lu.piv {
 | ||
| 		lu.piv[i] = i
 | ||
| 	}
 | ||
| 	n, _ := lu.Dims()
 | ||
| 	for i := n - 1; i >= 0; i-- {
 | ||
| 		v := swaps[i]
 | ||
| 		lu.piv[i], lu.piv[v] = lu.piv[v], lu.piv[i]
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| // isValid returns whether the receiver contains a factorization.
 | ||
| func (lu *LU) isValid() bool {
 | ||
| 	return lu.lu != nil && !lu.lu.IsEmpty()
 | ||
| }
 | ||
| 
 | ||
| // Cond returns the condition number for the factorized matrix.
 | ||
| // Cond will panic if the receiver does not contain a factorization.
 | ||
| func (lu *LU) Cond() float64 {
 | ||
| 	if !lu.isValid() {
 | ||
| 		panic(badLU)
 | ||
| 	}
 | ||
| 	return lu.cond
 | ||
| }
 | ||
| 
 | ||
| // Reset resets the factorization so that it can be reused as the receiver of a
 | ||
| // dimensionally restricted operation.
 | ||
| func (lu *LU) Reset() {
 | ||
| 	if lu.lu != nil {
 | ||
| 		lu.lu.Reset()
 | ||
| 	}
 | ||
| 	lu.swaps = lu.swaps[:0]
 | ||
| 	lu.piv = lu.piv[:0]
 | ||
| }
 | ||
| 
 | ||
| func (lu *LU) isZero() bool {
 | ||
| 	return len(lu.swaps) == 0
 | ||
| }
 | ||
| 
 | ||
| // Det returns the determinant of the matrix that has been factorized. In many
 | ||
| // expressions, using LogDet will be more numerically stable.
 | ||
| // Det will panic if the receiver does not contain a factorization.
 | ||
| func (lu *LU) Det() float64 {
 | ||
| 	if !lu.ok {
 | ||
| 		return 0
 | ||
| 	}
 | ||
| 	det, sign := lu.LogDet()
 | ||
| 	return math.Exp(det) * sign
 | ||
| }
 | ||
| 
 | ||
| // LogDet returns the log of the determinant and the sign of the determinant
 | ||
| // for the matrix that has been factorized. Numerical stability in product and
 | ||
| // division expressions is generally improved by working in log space.
 | ||
| // LogDet will panic if the receiver does not contain a factorization.
 | ||
| func (lu *LU) LogDet() (det float64, sign float64) {
 | ||
| 	if !lu.isValid() {
 | ||
| 		panic(badLU)
 | ||
| 	}
 | ||
| 
 | ||
| 	_, n := lu.lu.Dims()
 | ||
| 	logDiag := getFloat64s(n, false)
 | ||
| 	defer putFloat64s(logDiag)
 | ||
| 	sign = 1.0
 | ||
| 	for i := 0; i < n; i++ {
 | ||
| 		v := lu.lu.at(i, i)
 | ||
| 		if v < 0 {
 | ||
| 			sign *= -1
 | ||
| 		}
 | ||
| 		if lu.swaps[i] != i {
 | ||
| 			sign *= -1
 | ||
| 		}
 | ||
| 		logDiag[i] = math.Log(math.Abs(v))
 | ||
| 	}
 | ||
| 	return floats.Sum(logDiag), sign
 | ||
| }
 | ||
| 
 | ||
| // RowPivots returns the row permutation that represents the permutation matrix
 | ||
| // P from the LU factorization
 | ||
| //
 | ||
| //	A = P * L * U.
 | ||
| //
 | ||
| // If dst is nil, a new slice is allocated and returned. If dst is not nil and
 | ||
| // the length of dst does not equal the size of the factorized matrix, RowPivots
 | ||
| // will panic. RowPivots will panic if the receiver does not contain a
 | ||
| // factorization.
 | ||
| func (lu *LU) RowPivots(dst []int) []int {
 | ||
| 	if !lu.isValid() {
 | ||
| 		panic(badLU)
 | ||
| 	}
 | ||
| 	_, n := lu.lu.Dims()
 | ||
| 	if dst == nil {
 | ||
| 		dst = make([]int, n)
 | ||
| 	}
 | ||
| 	if len(dst) != n {
 | ||
| 		panic(badSliceLength)
 | ||
| 	}
 | ||
| 	copy(dst, lu.piv)
 | ||
| 	return dst
 | ||
| }
 | ||
| 
 | ||
| // Pivot returns the row pivots of the receiver.
 | ||
| //
 | ||
| // Deprecated: Use RowPivots instead.
 | ||
| func (lu *LU) Pivot(dst []int) []int {
 | ||
| 	return lu.RowPivots(dst)
 | ||
| }
 | ||
| 
 | ||
| // RankOne updates an LU factorization as if a rank-one update had been applied to
 | ||
| // the original matrix A, storing the result into the receiver. That is, if in
 | ||
| // the original LU decomposition P * L * U = A, in the updated decomposition
 | ||
| // P * L' * U' = A + alpha * x * yᵀ.
 | ||
| // RankOne will panic if orig does not contain a factorization.
 | ||
| func (lu *LU) RankOne(orig *LU, alpha float64, x, y Vector) {
 | ||
| 	if !orig.isValid() {
 | ||
| 		panic(badLU)
 | ||
| 	}
 | ||
| 
 | ||
| 	// RankOne uses algorithm a1 on page 28 of "Multiple-Rank Updates to Matrix
 | ||
| 	// Factorizations for Nonlinear Analysis and Circuit Design" by Linzhong Deng.
 | ||
| 	// http://web.stanford.edu/group/SOL/dissertations/Linzhong-Deng-thesis.pdf
 | ||
| 	_, n := orig.lu.Dims()
 | ||
| 	if r, c := x.Dims(); r != n || c != 1 {
 | ||
| 		panic(ErrShape)
 | ||
| 	}
 | ||
| 	if r, c := y.Dims(); r != n || c != 1 {
 | ||
| 		panic(ErrShape)
 | ||
| 	}
 | ||
| 	if orig != lu {
 | ||
| 		if lu.isZero() {
 | ||
| 			lu.swaps = useInt(lu.swaps, n)
 | ||
| 			lu.piv = useInt(lu.piv, n)
 | ||
| 			if lu.lu == nil {
 | ||
| 				lu.lu = NewDense(n, n, nil)
 | ||
| 			} else {
 | ||
| 				lu.lu.reuseAsNonZeroed(n, n)
 | ||
| 			}
 | ||
| 		} else if len(lu.swaps) != n {
 | ||
| 			panic(ErrShape)
 | ||
| 		}
 | ||
| 		copy(lu.swaps, orig.swaps)
 | ||
| 		lu.updatePivots(lu.swaps)
 | ||
| 		lu.lu.Copy(orig.lu)
 | ||
| 	}
 | ||
| 
 | ||
| 	xs := getFloat64s(n, false)
 | ||
| 	defer putFloat64s(xs)
 | ||
| 	ys := getFloat64s(n, false)
 | ||
| 	defer putFloat64s(ys)
 | ||
| 	for i := 0; i < n; i++ {
 | ||
| 		xs[i] = x.AtVec(i)
 | ||
| 		ys[i] = y.AtVec(i)
 | ||
| 	}
 | ||
| 
 | ||
| 	// Adjust for the pivoting in the LU factorization
 | ||
| 	for i, v := range lu.swaps {
 | ||
| 		xs[i], xs[v] = xs[v], xs[i]
 | ||
| 	}
 | ||
| 
 | ||
| 	lum := lu.lu.mat
 | ||
| 	omega := alpha
 | ||
| 	for j := 0; j < n; j++ {
 | ||
| 		ujj := lum.Data[j*lum.Stride+j]
 | ||
| 		ys[j] /= ujj
 | ||
| 		theta := 1 + xs[j]*ys[j]*omega
 | ||
| 		beta := omega * ys[j] / theta
 | ||
| 		gamma := omega * xs[j]
 | ||
| 		omega -= beta * gamma
 | ||
| 		lum.Data[j*lum.Stride+j] *= theta
 | ||
| 		for i := j + 1; i < n; i++ {
 | ||
| 			xs[i] -= lum.Data[i*lum.Stride+j] * xs[j]
 | ||
| 			tmp := ys[i]
 | ||
| 			ys[i] -= lum.Data[j*lum.Stride+i] * ys[j]
 | ||
| 			lum.Data[i*lum.Stride+j] += beta * xs[i]
 | ||
| 			lum.Data[j*lum.Stride+i] += gamma * tmp
 | ||
| 		}
 | ||
| 	}
 | ||
| 	lu.updateCond(-1, CondNorm)
 | ||
| }
 | ||
| 
 | ||
| // LTo extracts the lower triangular matrix from an LU factorization.
 | ||
| //
 | ||
| // If dst is empty, LTo will resize dst to be a lower-triangular n×n matrix.
 | ||
| // When dst is non-empty, LTo will panic if dst is not n×n or not Lower.
 | ||
| // LTo will also panic if the receiver does not contain a successful
 | ||
| // factorization.
 | ||
| func (lu *LU) LTo(dst *TriDense) *TriDense {
 | ||
| 	if !lu.isValid() {
 | ||
| 		panic(badLU)
 | ||
| 	}
 | ||
| 
 | ||
| 	_, n := lu.lu.Dims()
 | ||
| 	if dst.IsEmpty() {
 | ||
| 		dst.ReuseAsTri(n, Lower)
 | ||
| 	} else {
 | ||
| 		n2, kind := dst.Triangle()
 | ||
| 		if n != n2 {
 | ||
| 			panic(ErrShape)
 | ||
| 		}
 | ||
| 		if kind != Lower {
 | ||
| 			panic(ErrTriangle)
 | ||
| 		}
 | ||
| 	}
 | ||
| 	// Extract the lower triangular elements.
 | ||
| 	for i := 1; i < n; i++ {
 | ||
| 		copy(dst.mat.Data[i*dst.mat.Stride:i*dst.mat.Stride+i], lu.lu.mat.Data[i*lu.lu.mat.Stride:i*lu.lu.mat.Stride+i])
 | ||
| 	}
 | ||
| 	// Set ones on the diagonal.
 | ||
| 	for i := 0; i < n; i++ {
 | ||
| 		dst.mat.Data[i*dst.mat.Stride+i] = 1
 | ||
| 	}
 | ||
| 	return dst
 | ||
| }
 | ||
| 
 | ||
| // UTo extracts the upper triangular matrix from an LU factorization.
 | ||
| //
 | ||
| // If dst is empty, UTo will resize dst to be an upper-triangular n×n matrix.
 | ||
| // When dst is non-empty, UTo will panic if dst is not n×n or not Upper.
 | ||
| // UTo will also panic if the receiver does not contain a successful
 | ||
| // factorization.
 | ||
| func (lu *LU) UTo(dst *TriDense) {
 | ||
| 	if !lu.isValid() {
 | ||
| 		panic(badLU)
 | ||
| 	}
 | ||
| 
 | ||
| 	_, n := lu.lu.Dims()
 | ||
| 	if dst.IsEmpty() {
 | ||
| 		dst.ReuseAsTri(n, Upper)
 | ||
| 	} else {
 | ||
| 		n2, kind := dst.Triangle()
 | ||
| 		if n != n2 {
 | ||
| 			panic(ErrShape)
 | ||
| 		}
 | ||
| 		if kind != Upper {
 | ||
| 			panic(ErrTriangle)
 | ||
| 		}
 | ||
| 	}
 | ||
| 	// Extract the upper triangular elements.
 | ||
| 	for i := 0; i < n; i++ {
 | ||
| 		copy(dst.mat.Data[i*dst.mat.Stride+i:i*dst.mat.Stride+n], lu.lu.mat.Data[i*lu.lu.mat.Stride+i:i*lu.lu.mat.Stride+n])
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| // SolveTo solves a system of linear equations
 | ||
| //
 | ||
| //	A * X = B   if trans == false
 | ||
| //	Aᵀ * X = B  if trans == true
 | ||
| //
 | ||
| // using the LU factorization of A stored in the receiver. The solution matrix X
 | ||
| // is stored into dst.
 | ||
| //
 | ||
| // If A is singular or near-singular a Condition error is returned. See the
 | ||
| // documentation for Condition for more information. SolveTo will panic if the
 | ||
| // receiver does not contain a factorization.
 | ||
| func (lu *LU) SolveTo(dst *Dense, trans bool, b Matrix) error {
 | ||
| 	if !lu.isValid() {
 | ||
| 		panic(badLU)
 | ||
| 	}
 | ||
| 
 | ||
| 	_, n := lu.lu.Dims()
 | ||
| 	br, bc := b.Dims()
 | ||
| 	if br != n {
 | ||
| 		panic(ErrShape)
 | ||
| 	}
 | ||
| 
 | ||
| 	if !lu.ok {
 | ||
| 		return Condition(math.Inf(1))
 | ||
| 	}
 | ||
| 
 | ||
| 	dst.reuseAsNonZeroed(n, bc)
 | ||
| 	bU, _ := untranspose(b)
 | ||
| 	if dst == bU {
 | ||
| 		var restore func()
 | ||
| 		dst, restore = dst.isolatedWorkspace(bU)
 | ||
| 		defer restore()
 | ||
| 	} else if rm, ok := bU.(RawMatrixer); ok {
 | ||
| 		dst.checkOverlap(rm.RawMatrix())
 | ||
| 	}
 | ||
| 
 | ||
| 	dst.Copy(b)
 | ||
| 	t := blas.NoTrans
 | ||
| 	if trans {
 | ||
| 		t = blas.Trans
 | ||
| 	}
 | ||
| 	lapack64.Getrs(t, lu.lu.mat, dst.mat, lu.swaps)
 | ||
| 	if lu.cond > ConditionTolerance {
 | ||
| 		return Condition(lu.cond)
 | ||
| 	}
 | ||
| 	return nil
 | ||
| }
 | ||
| 
 | ||
| // SolveVecTo solves a system of linear equations
 | ||
| //
 | ||
| //	A * x = b   if trans == false
 | ||
| //	Aᵀ * x = b  if trans == true
 | ||
| //
 | ||
| // using the LU factorization of A stored in the receiver. The solution matrix x
 | ||
| // is stored into dst.
 | ||
| //
 | ||
| // If A is singular or near-singular a Condition error is returned. See the
 | ||
| // documentation for Condition for more information. SolveVecTo will panic if the
 | ||
| // receiver does not contain a factorization.
 | ||
| func (lu *LU) SolveVecTo(dst *VecDense, trans bool, b Vector) error {
 | ||
| 	if !lu.isValid() {
 | ||
| 		panic(badLU)
 | ||
| 	}
 | ||
| 
 | ||
| 	_, n := lu.lu.Dims()
 | ||
| 	if br, bc := b.Dims(); br != n || bc != 1 {
 | ||
| 		panic(ErrShape)
 | ||
| 	}
 | ||
| 
 | ||
| 	switch rv := b.(type) {
 | ||
| 	default:
 | ||
| 		dst.reuseAsNonZeroed(n)
 | ||
| 		return lu.SolveTo(dst.asDense(), trans, b)
 | ||
| 	case RawVectorer:
 | ||
| 		if dst != b {
 | ||
| 			dst.checkOverlap(rv.RawVector())
 | ||
| 		}
 | ||
| 
 | ||
| 		if !lu.ok {
 | ||
| 			return Condition(math.Inf(1))
 | ||
| 		}
 | ||
| 
 | ||
| 		dst.reuseAsNonZeroed(n)
 | ||
| 		var restore func()
 | ||
| 		if dst == b {
 | ||
| 			dst, restore = dst.isolatedWorkspace(b)
 | ||
| 			defer restore()
 | ||
| 		}
 | ||
| 		dst.CopyVec(b)
 | ||
| 		vMat := blas64.General{
 | ||
| 			Rows:   n,
 | ||
| 			Cols:   1,
 | ||
| 			Stride: dst.mat.Inc,
 | ||
| 			Data:   dst.mat.Data,
 | ||
| 		}
 | ||
| 		t := blas.NoTrans
 | ||
| 		if trans {
 | ||
| 			t = blas.Trans
 | ||
| 		}
 | ||
| 		lapack64.Getrs(t, lu.lu.mat, vMat, lu.swaps)
 | ||
| 		if lu.cond > ConditionTolerance {
 | ||
| 			return Condition(lu.cond)
 | ||
| 		}
 | ||
| 		return nil
 | ||
| 	}
 | ||
| }
 |