601 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			Go
		
	
	
			
		
		
	
	
			601 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			Go
		
	
	
// Copyright ©2015 The Gonum Authors. All rights reserved.
 | 
						||
// Use of this source code is governed by a BSD-style
 | 
						||
// license that can be found in the LICENSE file.
 | 
						||
 | 
						||
package cblas128
 | 
						||
 | 
						||
import (
 | 
						||
	"gonum.org/v1/gonum/blas"
 | 
						||
	"gonum.org/v1/gonum/blas/gonum"
 | 
						||
)
 | 
						||
 | 
						||
var cblas128 blas.Complex128 = gonum.Implementation{}
 | 
						||
 | 
						||
// Use sets the BLAS complex128 implementation to be used by subsequent BLAS calls.
 | 
						||
// The default implementation is
 | 
						||
// gonum.org/v1/gonum/blas/gonum.Implementation.
 | 
						||
func Use(b blas.Complex128) {
 | 
						||
	cblas128 = b
 | 
						||
}
 | 
						||
 | 
						||
// Implementation returns the current BLAS complex128 implementation.
 | 
						||
//
 | 
						||
// Implementation allows direct calls to the current the BLAS complex128 implementation
 | 
						||
// giving finer control of parameters.
 | 
						||
func Implementation() blas.Complex128 {
 | 
						||
	return cblas128
 | 
						||
}
 | 
						||
 | 
						||
// Vector represents a vector with an associated element increment.
 | 
						||
type Vector struct {
 | 
						||
	N    int
 | 
						||
	Inc  int
 | 
						||
	Data []complex128
 | 
						||
}
 | 
						||
 | 
						||
// General represents a matrix using the conventional storage scheme.
 | 
						||
type General struct {
 | 
						||
	Rows, Cols int
 | 
						||
	Stride     int
 | 
						||
	Data       []complex128
 | 
						||
}
 | 
						||
 | 
						||
// Band represents a band matrix using the band storage scheme.
 | 
						||
type Band struct {
 | 
						||
	Rows, Cols int
 | 
						||
	KL, KU     int
 | 
						||
	Stride     int
 | 
						||
	Data       []complex128
 | 
						||
}
 | 
						||
 | 
						||
// Triangular represents a triangular matrix using the conventional storage scheme.
 | 
						||
type Triangular struct {
 | 
						||
	N      int
 | 
						||
	Stride int
 | 
						||
	Data   []complex128
 | 
						||
	Uplo   blas.Uplo
 | 
						||
	Diag   blas.Diag
 | 
						||
}
 | 
						||
 | 
						||
// TriangularBand represents a triangular matrix using the band storage scheme.
 | 
						||
type TriangularBand struct {
 | 
						||
	N, K   int
 | 
						||
	Stride int
 | 
						||
	Data   []complex128
 | 
						||
	Uplo   blas.Uplo
 | 
						||
	Diag   blas.Diag
 | 
						||
}
 | 
						||
 | 
						||
// TriangularPacked represents a triangular matrix using the packed storage scheme.
 | 
						||
type TriangularPacked struct {
 | 
						||
	N    int
 | 
						||
	Data []complex128
 | 
						||
	Uplo blas.Uplo
 | 
						||
	Diag blas.Diag
 | 
						||
}
 | 
						||
 | 
						||
// Symmetric represents a symmetric matrix using the conventional storage scheme.
 | 
						||
type Symmetric struct {
 | 
						||
	N      int
 | 
						||
	Stride int
 | 
						||
	Data   []complex128
 | 
						||
	Uplo   blas.Uplo
 | 
						||
}
 | 
						||
 | 
						||
// SymmetricBand represents a symmetric matrix using the band storage scheme.
 | 
						||
type SymmetricBand struct {
 | 
						||
	N, K   int
 | 
						||
	Stride int
 | 
						||
	Data   []complex128
 | 
						||
	Uplo   blas.Uplo
 | 
						||
}
 | 
						||
 | 
						||
// SymmetricPacked represents a symmetric matrix using the packed storage scheme.
 | 
						||
type SymmetricPacked struct {
 | 
						||
	N    int
 | 
						||
	Data []complex128
 | 
						||
	Uplo blas.Uplo
 | 
						||
}
 | 
						||
 | 
						||
// Hermitian represents an Hermitian matrix using the conventional storage scheme.
 | 
						||
type Hermitian Symmetric
 | 
						||
 | 
						||
// HermitianBand represents an Hermitian matrix using the band storage scheme.
 | 
						||
type HermitianBand SymmetricBand
 | 
						||
 | 
						||
// HermitianPacked represents an Hermitian matrix using the packed storage scheme.
 | 
						||
type HermitianPacked SymmetricPacked
 | 
						||
 | 
						||
// Level 1
 | 
						||
 | 
						||
const (
 | 
						||
	negInc    = "cblas128: negative vector increment"
 | 
						||
	badLength = "cblas128: vector length mismatch"
 | 
						||
)
 | 
						||
 | 
						||
// Dotu computes the dot product of the two vectors without
 | 
						||
// complex conjugation:
 | 
						||
//
 | 
						||
//	xᵀ * y.
 | 
						||
//
 | 
						||
// Dotu will panic if the lengths of x and y do not match.
 | 
						||
func Dotu(x, y Vector) complex128 {
 | 
						||
	if x.N != y.N {
 | 
						||
		panic(badLength)
 | 
						||
	}
 | 
						||
	return cblas128.Zdotu(x.N, x.Data, x.Inc, y.Data, y.Inc)
 | 
						||
}
 | 
						||
 | 
						||
// Dotc computes the dot product of the two vectors with
 | 
						||
// complex conjugation:
 | 
						||
//
 | 
						||
//	xᴴ * y.
 | 
						||
//
 | 
						||
// Dotc will panic if the lengths of x and y do not match.
 | 
						||
func Dotc(x, y Vector) complex128 {
 | 
						||
	if x.N != y.N {
 | 
						||
		panic(badLength)
 | 
						||
	}
 | 
						||
	return cblas128.Zdotc(x.N, x.Data, x.Inc, y.Data, y.Inc)
 | 
						||
}
 | 
						||
 | 
						||
// Nrm2 computes the Euclidean norm of the vector x:
 | 
						||
//
 | 
						||
//	sqrt(\sum_i x[i] * x[i]).
 | 
						||
//
 | 
						||
// Nrm2 will panic if the vector increment is negative.
 | 
						||
func Nrm2(x Vector) float64 {
 | 
						||
	if x.Inc < 0 {
 | 
						||
		panic(negInc)
 | 
						||
	}
 | 
						||
	return cblas128.Dznrm2(x.N, x.Data, x.Inc)
 | 
						||
}
 | 
						||
 | 
						||
// Asum computes the sum of magnitudes of the real and imaginary parts of
 | 
						||
// elements of the vector x:
 | 
						||
//
 | 
						||
//	\sum_i (|Re x[i]| + |Im x[i]|).
 | 
						||
//
 | 
						||
// Asum will panic if the vector increment is negative.
 | 
						||
func Asum(x Vector) float64 {
 | 
						||
	if x.Inc < 0 {
 | 
						||
		panic(negInc)
 | 
						||
	}
 | 
						||
	return cblas128.Dzasum(x.N, x.Data, x.Inc)
 | 
						||
}
 | 
						||
 | 
						||
// Iamax returns the index of an element of x with the largest sum of
 | 
						||
// magnitudes of the real and imaginary parts (|Re x[i]|+|Im x[i]|).
 | 
						||
// If there are multiple such indices, the earliest is returned.
 | 
						||
//
 | 
						||
// Iamax returns -1 if n == 0.
 | 
						||
//
 | 
						||
// Iamax will panic if the vector increment is negative.
 | 
						||
func Iamax(x Vector) int {
 | 
						||
	if x.Inc < 0 {
 | 
						||
		panic(negInc)
 | 
						||
	}
 | 
						||
	return cblas128.Izamax(x.N, x.Data, x.Inc)
 | 
						||
}
 | 
						||
 | 
						||
// Swap exchanges the elements of two vectors:
 | 
						||
//
 | 
						||
//	x[i], y[i] = y[i], x[i] for all i.
 | 
						||
//
 | 
						||
// Swap will panic if the lengths of x and y do not match.
 | 
						||
func Swap(x, y Vector) {
 | 
						||
	if x.N != y.N {
 | 
						||
		panic(badLength)
 | 
						||
	}
 | 
						||
	cblas128.Zswap(x.N, x.Data, x.Inc, y.Data, y.Inc)
 | 
						||
}
 | 
						||
 | 
						||
// Copy copies the elements of x into the elements of y:
 | 
						||
//
 | 
						||
//	y[i] = x[i] for all i.
 | 
						||
//
 | 
						||
// Copy will panic if the lengths of x and y do not match.
 | 
						||
func Copy(x, y Vector) {
 | 
						||
	if x.N != y.N {
 | 
						||
		panic(badLength)
 | 
						||
	}
 | 
						||
	cblas128.Zcopy(x.N, x.Data, x.Inc, y.Data, y.Inc)
 | 
						||
}
 | 
						||
 | 
						||
// Axpy computes
 | 
						||
//
 | 
						||
//	y = alpha * x + y,
 | 
						||
//
 | 
						||
// where x and y are vectors, and alpha is a scalar.
 | 
						||
// Axpy will panic if the lengths of x and y do not match.
 | 
						||
func Axpy(alpha complex128, x, y Vector) {
 | 
						||
	if x.N != y.N {
 | 
						||
		panic(badLength)
 | 
						||
	}
 | 
						||
	cblas128.Zaxpy(x.N, alpha, x.Data, x.Inc, y.Data, y.Inc)
 | 
						||
}
 | 
						||
 | 
						||
// Scal computes
 | 
						||
//
 | 
						||
//	x = alpha * x,
 | 
						||
//
 | 
						||
// where x is a vector, and alpha is a scalar.
 | 
						||
//
 | 
						||
// Scal will panic if the vector increment is negative.
 | 
						||
func Scal(alpha complex128, x Vector) {
 | 
						||
	if x.Inc < 0 {
 | 
						||
		panic(negInc)
 | 
						||
	}
 | 
						||
	cblas128.Zscal(x.N, alpha, x.Data, x.Inc)
 | 
						||
}
 | 
						||
 | 
						||
// Dscal computes
 | 
						||
//
 | 
						||
//	x = alpha * x,
 | 
						||
//
 | 
						||
// where x is a vector, and alpha is a real scalar.
 | 
						||
//
 | 
						||
// Dscal will panic if the vector increment is negative.
 | 
						||
func Dscal(alpha float64, x Vector) {
 | 
						||
	if x.Inc < 0 {
 | 
						||
		panic(negInc)
 | 
						||
	}
 | 
						||
	cblas128.Zdscal(x.N, alpha, x.Data, x.Inc)
 | 
						||
}
 | 
						||
 | 
						||
// Level 2
 | 
						||
 | 
						||
// Gemv computes
 | 
						||
//
 | 
						||
//	y = alpha * A * x + beta * y   if t == blas.NoTrans,
 | 
						||
//	y = alpha * Aᵀ * x + beta * y  if t == blas.Trans,
 | 
						||
//	y = alpha * Aᴴ * x + beta * y  if t == blas.ConjTrans,
 | 
						||
//
 | 
						||
// where A is an m×n dense matrix, x and y are vectors, and alpha and beta are
 | 
						||
// scalars.
 | 
						||
func Gemv(t blas.Transpose, alpha complex128, a General, x Vector, beta complex128, y Vector) {
 | 
						||
	cblas128.Zgemv(t, a.Rows, a.Cols, alpha, a.Data, a.Stride, x.Data, x.Inc, beta, y.Data, y.Inc)
 | 
						||
}
 | 
						||
 | 
						||
// Gbmv computes
 | 
						||
//
 | 
						||
//	y = alpha * A * x + beta * y   if t == blas.NoTrans,
 | 
						||
//	y = alpha * Aᵀ * x + beta * y  if t == blas.Trans,
 | 
						||
//	y = alpha * Aᴴ * x + beta * y  if t == blas.ConjTrans,
 | 
						||
//
 | 
						||
// where A is an m×n band matrix, x and y are vectors, and alpha and beta are
 | 
						||
// scalars.
 | 
						||
func Gbmv(t blas.Transpose, alpha complex128, a Band, x Vector, beta complex128, y Vector) {
 | 
						||
	cblas128.Zgbmv(t, a.Rows, a.Cols, a.KL, a.KU, alpha, a.Data, a.Stride, x.Data, x.Inc, beta, y.Data, y.Inc)
 | 
						||
}
 | 
						||
 | 
						||
// Trmv computes
 | 
						||
//
 | 
						||
//	x = A * x   if t == blas.NoTrans,
 | 
						||
//	x = Aᵀ * x  if t == blas.Trans,
 | 
						||
//	x = Aᴴ * x  if t == blas.ConjTrans,
 | 
						||
//
 | 
						||
// where A is an n×n triangular matrix, and x is a vector.
 | 
						||
func Trmv(t blas.Transpose, a Triangular, x Vector) {
 | 
						||
	cblas128.Ztrmv(a.Uplo, t, a.Diag, a.N, a.Data, a.Stride, x.Data, x.Inc)
 | 
						||
}
 | 
						||
 | 
						||
// Tbmv computes
 | 
						||
//
 | 
						||
//	x = A * x   if t == blas.NoTrans,
 | 
						||
//	x = Aᵀ * x  if t == blas.Trans,
 | 
						||
//	x = Aᴴ * x  if t == blas.ConjTrans,
 | 
						||
//
 | 
						||
// where A is an n×n triangular band matrix, and x is a vector.
 | 
						||
func Tbmv(t blas.Transpose, a TriangularBand, x Vector) {
 | 
						||
	cblas128.Ztbmv(a.Uplo, t, a.Diag, a.N, a.K, a.Data, a.Stride, x.Data, x.Inc)
 | 
						||
}
 | 
						||
 | 
						||
// Tpmv computes
 | 
						||
//
 | 
						||
//	x = A * x   if t == blas.NoTrans,
 | 
						||
//	x = Aᵀ * x  if t == blas.Trans,
 | 
						||
//	x = Aᴴ * x  if t == blas.ConjTrans,
 | 
						||
//
 | 
						||
// where A is an n×n triangular matrix in packed format, and x is a vector.
 | 
						||
func Tpmv(t blas.Transpose, a TriangularPacked, x Vector) {
 | 
						||
	cblas128.Ztpmv(a.Uplo, t, a.Diag, a.N, a.Data, x.Data, x.Inc)
 | 
						||
}
 | 
						||
 | 
						||
// Trsv solves
 | 
						||
//
 | 
						||
//	A * x = b   if t == blas.NoTrans,
 | 
						||
//	Aᵀ * x = b  if t == blas.Trans,
 | 
						||
//	Aᴴ * x = b  if t == blas.ConjTrans,
 | 
						||
//
 | 
						||
// where A is an n×n triangular matrix and x is a vector.
 | 
						||
//
 | 
						||
// At entry to the function, x contains the values of b, and the result is
 | 
						||
// stored in-place into x.
 | 
						||
//
 | 
						||
// No test for singularity or near-singularity is included in this
 | 
						||
// routine. Such tests must be performed before calling this routine.
 | 
						||
func Trsv(t blas.Transpose, a Triangular, x Vector) {
 | 
						||
	cblas128.Ztrsv(a.Uplo, t, a.Diag, a.N, a.Data, a.Stride, x.Data, x.Inc)
 | 
						||
}
 | 
						||
 | 
						||
// Tbsv solves
 | 
						||
//
 | 
						||
//	A * x = b   if t == blas.NoTrans,
 | 
						||
//	Aᵀ * x = b  if t == blas.Trans,
 | 
						||
//	Aᴴ * x = b  if t == blas.ConjTrans,
 | 
						||
//
 | 
						||
// where A is an n×n triangular band matrix, and x is a vector.
 | 
						||
//
 | 
						||
// At entry to the function, x contains the values of b, and the result is
 | 
						||
// stored in-place into x.
 | 
						||
//
 | 
						||
// No test for singularity or near-singularity is included in this
 | 
						||
// routine. Such tests must be performed before calling this routine.
 | 
						||
func Tbsv(t blas.Transpose, a TriangularBand, x Vector) {
 | 
						||
	cblas128.Ztbsv(a.Uplo, t, a.Diag, a.N, a.K, a.Data, a.Stride, x.Data, x.Inc)
 | 
						||
}
 | 
						||
 | 
						||
// Tpsv solves
 | 
						||
//
 | 
						||
//	A * x = b   if t == blas.NoTrans,
 | 
						||
//	Aᵀ * x = b  if t == blas.Trans,
 | 
						||
//	Aᴴ * x = b  if t == blas.ConjTrans,
 | 
						||
//
 | 
						||
// where A is an n×n triangular matrix in packed format and x is a vector.
 | 
						||
//
 | 
						||
// At entry to the function, x contains the values of b, and the result is
 | 
						||
// stored in-place into x.
 | 
						||
//
 | 
						||
// No test for singularity or near-singularity is included in this
 | 
						||
// routine. Such tests must be performed before calling this routine.
 | 
						||
func Tpsv(t blas.Transpose, a TriangularPacked, x Vector) {
 | 
						||
	cblas128.Ztpsv(a.Uplo, t, a.Diag, a.N, a.Data, x.Data, x.Inc)
 | 
						||
}
 | 
						||
 | 
						||
// Hemv computes
 | 
						||
//
 | 
						||
//	y = alpha * A * x + beta * y,
 | 
						||
//
 | 
						||
// where A is an n×n Hermitian matrix, x and y are vectors, and alpha and
 | 
						||
// beta are scalars.
 | 
						||
func Hemv(alpha complex128, a Hermitian, x Vector, beta complex128, y Vector) {
 | 
						||
	cblas128.Zhemv(a.Uplo, a.N, alpha, a.Data, a.Stride, x.Data, x.Inc, beta, y.Data, y.Inc)
 | 
						||
}
 | 
						||
 | 
						||
// Hbmv performs
 | 
						||
//
 | 
						||
//	y = alpha * A * x + beta * y,
 | 
						||
//
 | 
						||
// where A is an n×n Hermitian band matrix, x and y are vectors, and alpha
 | 
						||
// and beta are scalars.
 | 
						||
func Hbmv(alpha complex128, a HermitianBand, x Vector, beta complex128, y Vector) {
 | 
						||
	cblas128.Zhbmv(a.Uplo, a.N, a.K, alpha, a.Data, a.Stride, x.Data, x.Inc, beta, y.Data, y.Inc)
 | 
						||
}
 | 
						||
 | 
						||
// Hpmv performs
 | 
						||
//
 | 
						||
//	y = alpha * A * x + beta * y,
 | 
						||
//
 | 
						||
// where A is an n×n Hermitian matrix in packed format, x and y are vectors,
 | 
						||
// and alpha and beta are scalars.
 | 
						||
func Hpmv(alpha complex128, a HermitianPacked, x Vector, beta complex128, y Vector) {
 | 
						||
	cblas128.Zhpmv(a.Uplo, a.N, alpha, a.Data, x.Data, x.Inc, beta, y.Data, y.Inc)
 | 
						||
}
 | 
						||
 | 
						||
// Geru performs a rank-1 update
 | 
						||
//
 | 
						||
//	A += alpha * x * yᵀ,
 | 
						||
//
 | 
						||
// where A is an m×n dense matrix, x and y are vectors, and alpha is a scalar.
 | 
						||
func Geru(alpha complex128, x, y Vector, a General) {
 | 
						||
	cblas128.Zgeru(a.Rows, a.Cols, alpha, x.Data, x.Inc, y.Data, y.Inc, a.Data, a.Stride)
 | 
						||
}
 | 
						||
 | 
						||
// Gerc performs a rank-1 update
 | 
						||
//
 | 
						||
//	A += alpha * x * yᴴ,
 | 
						||
//
 | 
						||
// where A is an m×n dense matrix, x and y are vectors, and alpha is a scalar.
 | 
						||
func Gerc(alpha complex128, x, y Vector, a General) {
 | 
						||
	cblas128.Zgerc(a.Rows, a.Cols, alpha, x.Data, x.Inc, y.Data, y.Inc, a.Data, a.Stride)
 | 
						||
}
 | 
						||
 | 
						||
// Her performs a rank-1 update
 | 
						||
//
 | 
						||
//	A += alpha * x * yᵀ,
 | 
						||
//
 | 
						||
// where A is an m×n Hermitian matrix, x and y are vectors, and alpha is a scalar.
 | 
						||
func Her(alpha float64, x Vector, a Hermitian) {
 | 
						||
	cblas128.Zher(a.Uplo, a.N, alpha, x.Data, x.Inc, a.Data, a.Stride)
 | 
						||
}
 | 
						||
 | 
						||
// Hpr performs a rank-1 update
 | 
						||
//
 | 
						||
//	A += alpha * x * xᴴ,
 | 
						||
//
 | 
						||
// where A is an n×n Hermitian matrix in packed format, x is a vector, and
 | 
						||
// alpha is a scalar.
 | 
						||
func Hpr(alpha float64, x Vector, a HermitianPacked) {
 | 
						||
	cblas128.Zhpr(a.Uplo, a.N, alpha, x.Data, x.Inc, a.Data)
 | 
						||
}
 | 
						||
 | 
						||
// Her2 performs a rank-2 update
 | 
						||
//
 | 
						||
//	A += alpha * x * yᴴ + conj(alpha) * y * xᴴ,
 | 
						||
//
 | 
						||
// where A is an n×n Hermitian matrix, x and y are vectors, and alpha is a scalar.
 | 
						||
func Her2(alpha complex128, x, y Vector, a Hermitian) {
 | 
						||
	cblas128.Zher2(a.Uplo, a.N, alpha, x.Data, x.Inc, y.Data, y.Inc, a.Data, a.Stride)
 | 
						||
}
 | 
						||
 | 
						||
// Hpr2 performs a rank-2 update
 | 
						||
//
 | 
						||
//	A += alpha * x * yᴴ + conj(alpha) * y * xᴴ,
 | 
						||
//
 | 
						||
// where A is an n×n Hermitian matrix in packed format, x and y are vectors,
 | 
						||
// and alpha is a scalar.
 | 
						||
func Hpr2(alpha complex128, x, y Vector, a HermitianPacked) {
 | 
						||
	cblas128.Zhpr2(a.Uplo, a.N, alpha, x.Data, x.Inc, y.Data, y.Inc, a.Data)
 | 
						||
}
 | 
						||
 | 
						||
// Level 3
 | 
						||
 | 
						||
// Gemm computes
 | 
						||
//
 | 
						||
//	C = alpha * A * B + beta * C,
 | 
						||
//
 | 
						||
// where A, B, and C are dense matrices, and alpha and beta are scalars.
 | 
						||
// tA and tB specify whether A or B are transposed or conjugated.
 | 
						||
func Gemm(tA, tB blas.Transpose, alpha complex128, a, b General, beta complex128, c General) {
 | 
						||
	var m, n, k int
 | 
						||
	if tA == blas.NoTrans {
 | 
						||
		m, k = a.Rows, a.Cols
 | 
						||
	} else {
 | 
						||
		m, k = a.Cols, a.Rows
 | 
						||
	}
 | 
						||
	if tB == blas.NoTrans {
 | 
						||
		n = b.Cols
 | 
						||
	} else {
 | 
						||
		n = b.Rows
 | 
						||
	}
 | 
						||
	cblas128.Zgemm(tA, tB, m, n, k, alpha, a.Data, a.Stride, b.Data, b.Stride, beta, c.Data, c.Stride)
 | 
						||
}
 | 
						||
 | 
						||
// Symm performs
 | 
						||
//
 | 
						||
//	C = alpha * A * B + beta * C  if s == blas.Left,
 | 
						||
//	C = alpha * B * A + beta * C  if s == blas.Right,
 | 
						||
//
 | 
						||
// where A is an n×n or m×m symmetric matrix, B and C are m×n matrices, and
 | 
						||
// alpha and beta are scalars.
 | 
						||
func Symm(s blas.Side, alpha complex128, a Symmetric, b General, beta complex128, c General) {
 | 
						||
	var m, n int
 | 
						||
	if s == blas.Left {
 | 
						||
		m, n = a.N, b.Cols
 | 
						||
	} else {
 | 
						||
		m, n = b.Rows, a.N
 | 
						||
	}
 | 
						||
	cblas128.Zsymm(s, a.Uplo, m, n, alpha, a.Data, a.Stride, b.Data, b.Stride, beta, c.Data, c.Stride)
 | 
						||
}
 | 
						||
 | 
						||
// Syrk performs a symmetric rank-k update
 | 
						||
//
 | 
						||
//	C = alpha * A * Aᵀ + beta * C  if t == blas.NoTrans,
 | 
						||
//	C = alpha * Aᵀ * A + beta * C  if t == blas.Trans,
 | 
						||
//
 | 
						||
// where C is an n×n symmetric matrix, A is an n×k matrix if t == blas.NoTrans
 | 
						||
// and a k×n matrix otherwise, and alpha and beta are scalars.
 | 
						||
func Syrk(t blas.Transpose, alpha complex128, a General, beta complex128, c Symmetric) {
 | 
						||
	var n, k int
 | 
						||
	if t == blas.NoTrans {
 | 
						||
		n, k = a.Rows, a.Cols
 | 
						||
	} else {
 | 
						||
		n, k = a.Cols, a.Rows
 | 
						||
	}
 | 
						||
	cblas128.Zsyrk(c.Uplo, t, n, k, alpha, a.Data, a.Stride, beta, c.Data, c.Stride)
 | 
						||
}
 | 
						||
 | 
						||
// Syr2k performs a symmetric rank-2k update
 | 
						||
//
 | 
						||
//	C = alpha * A * Bᵀ + alpha * B * Aᵀ + beta * C  if t == blas.NoTrans,
 | 
						||
//	C = alpha * Aᵀ * B + alpha * Bᵀ * A + beta * C  if t == blas.Trans,
 | 
						||
//
 | 
						||
// where C is an n×n symmetric matrix, A and B are n×k matrices if
 | 
						||
// t == blas.NoTrans and k×n otherwise, and alpha and beta are scalars.
 | 
						||
func Syr2k(t blas.Transpose, alpha complex128, a, b General, beta complex128, c Symmetric) {
 | 
						||
	var n, k int
 | 
						||
	if t == blas.NoTrans {
 | 
						||
		n, k = a.Rows, a.Cols
 | 
						||
	} else {
 | 
						||
		n, k = a.Cols, a.Rows
 | 
						||
	}
 | 
						||
	cblas128.Zsyr2k(c.Uplo, t, n, k, alpha, a.Data, a.Stride, b.Data, b.Stride, beta, c.Data, c.Stride)
 | 
						||
}
 | 
						||
 | 
						||
// Trmm performs
 | 
						||
//
 | 
						||
//	B = alpha * A * B   if tA == blas.NoTrans and s == blas.Left,
 | 
						||
//	B = alpha * Aᵀ * B  if tA == blas.Trans and s == blas.Left,
 | 
						||
//	B = alpha * Aᴴ * B  if tA == blas.ConjTrans and s == blas.Left,
 | 
						||
//	B = alpha * B * A   if tA == blas.NoTrans and s == blas.Right,
 | 
						||
//	B = alpha * B * Aᵀ  if tA == blas.Trans and s == blas.Right,
 | 
						||
//	B = alpha * B * Aᴴ  if tA == blas.ConjTrans and s == blas.Right,
 | 
						||
//
 | 
						||
// where A is an n×n or m×m triangular matrix, B is an m×n matrix, and alpha is
 | 
						||
// a scalar.
 | 
						||
func Trmm(s blas.Side, tA blas.Transpose, alpha complex128, a Triangular, b General) {
 | 
						||
	cblas128.Ztrmm(s, a.Uplo, tA, a.Diag, b.Rows, b.Cols, alpha, a.Data, a.Stride, b.Data, b.Stride)
 | 
						||
}
 | 
						||
 | 
						||
// Trsm solves
 | 
						||
//
 | 
						||
//	A * X = alpha * B   if tA == blas.NoTrans and s == blas.Left,
 | 
						||
//	Aᵀ * X = alpha * B  if tA == blas.Trans and s == blas.Left,
 | 
						||
//	Aᴴ * X = alpha * B  if tA == blas.ConjTrans and s == blas.Left,
 | 
						||
//	X * A = alpha * B   if tA == blas.NoTrans and s == blas.Right,
 | 
						||
//	X * Aᵀ = alpha * B  if tA == blas.Trans and s == blas.Right,
 | 
						||
//	X * Aᴴ = alpha * B  if tA == blas.ConjTrans and s == blas.Right,
 | 
						||
//
 | 
						||
// where A is an n×n or m×m triangular matrix, X and B are m×n matrices, and
 | 
						||
// alpha is a scalar.
 | 
						||
//
 | 
						||
// At entry to the function, b contains the values of B, and the result is
 | 
						||
// stored in-place into b.
 | 
						||
//
 | 
						||
// No check is made that A is invertible.
 | 
						||
func Trsm(s blas.Side, tA blas.Transpose, alpha complex128, a Triangular, b General) {
 | 
						||
	cblas128.Ztrsm(s, a.Uplo, tA, a.Diag, b.Rows, b.Cols, alpha, a.Data, a.Stride, b.Data, b.Stride)
 | 
						||
}
 | 
						||
 | 
						||
// Hemm performs
 | 
						||
//
 | 
						||
//	C = alpha * A * B + beta * C  if s == blas.Left,
 | 
						||
//	C = alpha * B * A + beta * C  if s == blas.Right,
 | 
						||
//
 | 
						||
// where A is an n×n or m×m Hermitian matrix, B and C are m×n matrices, and
 | 
						||
// alpha and beta are scalars.
 | 
						||
func Hemm(s blas.Side, alpha complex128, a Hermitian, b General, beta complex128, c General) {
 | 
						||
	var m, n int
 | 
						||
	if s == blas.Left {
 | 
						||
		m, n = a.N, b.Cols
 | 
						||
	} else {
 | 
						||
		m, n = b.Rows, a.N
 | 
						||
	}
 | 
						||
	cblas128.Zhemm(s, a.Uplo, m, n, alpha, a.Data, a.Stride, b.Data, b.Stride, beta, c.Data, c.Stride)
 | 
						||
}
 | 
						||
 | 
						||
// Herk performs the Hermitian rank-k update
 | 
						||
//
 | 
						||
//	C = alpha * A * Aᴴ + beta*C  if t == blas.NoTrans,
 | 
						||
//	C = alpha * Aᴴ * A + beta*C  if t == blas.ConjTrans,
 | 
						||
//
 | 
						||
// where C is an n×n Hermitian matrix, A is an n×k matrix if t == blas.NoTrans
 | 
						||
// and a k×n matrix otherwise, and alpha and beta are scalars.
 | 
						||
func Herk(t blas.Transpose, alpha float64, a General, beta float64, c Hermitian) {
 | 
						||
	var n, k int
 | 
						||
	if t == blas.NoTrans {
 | 
						||
		n, k = a.Rows, a.Cols
 | 
						||
	} else {
 | 
						||
		n, k = a.Cols, a.Rows
 | 
						||
	}
 | 
						||
	cblas128.Zherk(c.Uplo, t, n, k, alpha, a.Data, a.Stride, beta, c.Data, c.Stride)
 | 
						||
}
 | 
						||
 | 
						||
// Her2k performs the Hermitian rank-2k update
 | 
						||
//
 | 
						||
//	C = alpha * A * Bᴴ + conj(alpha) * B * Aᴴ + beta * C  if t == blas.NoTrans,
 | 
						||
//	C = alpha * Aᴴ * B + conj(alpha) * Bᴴ * A + beta * C  if t == blas.ConjTrans,
 | 
						||
//
 | 
						||
// where C is an n×n Hermitian matrix, A and B are n×k matrices if t == NoTrans
 | 
						||
// and k×n matrices otherwise, and alpha and beta are scalars.
 | 
						||
func Her2k(t blas.Transpose, alpha complex128, a, b General, beta float64, c Hermitian) {
 | 
						||
	var n, k int
 | 
						||
	if t == blas.NoTrans {
 | 
						||
		n, k = a.Rows, a.Cols
 | 
						||
	} else {
 | 
						||
		n, k = a.Cols, a.Rows
 | 
						||
	}
 | 
						||
	cblas128.Zher2k(c.Uplo, t, n, k, alpha, a.Data, a.Stride, b.Data, b.Stride, beta, c.Data, c.Stride)
 | 
						||
}
 |